DOI QR코드

DOI QR Code

Preceramic Polymer Technology for High Temperature Ceramic Composite and its Application

초고온복합소재용 프리세라믹폴리머 합성 및 응용기술

  • Lee, Yoonjoo (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Seong Gun (Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Hyeon Myoung (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Kwang Youn (Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Riu, Doh Hyung (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Shin, Dong Geun (Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2017.03.29
  • Accepted : 2017.04.30
  • Published : 2017.04.30

Abstract

The preceramic polymer can realize a variety of complex ceramic structures that can not be obtained by conventional ceramic processes. Polycarbosilane, which is a typical preceramic polymer, can control the molecular structure, molecular weight and molecular weight distribution for preparing complex morphology and microstructure of SiC ceramics, including SiC fiber. In this paper, synthesis and molecular structure control technique of polycarbosilane is explained. The silicon carbide fiber prepared by melt spinning, stabilization and heat treatment, and ceramic fiber composites technology made by PIP process are also discussed. In addition, we introduce an example of the development of a complex silicon carbide material such as a silicon carbide hollow fiber having a nanoporous structure.

프리세라믹폴리머는 기존의 세라믹 공정으로는 얻을 수 없는 다양하고 복잡한 구조의 세라믹 소재를 구현할 수 있다. 대표적인 프리세라믹폴리머인 폴리카보실란은 분자구조 제어를 통해 실리콘과 탄소의 함량비 조절이나 분자구조의 선형성을 향상시키고 분자량 및 분자량분포 제어를 통해 탄화규소섬유를 포함한 다앙한 형상/미세구조의 탄화규소 세라믹을 제조할 수 있다. 본 논문에서는 폴리카보실란의 합성 및 분자구조제어기술과 이를 용융방사 및 안정화, 열처리를 거쳐 제조되는 탄화규소섬유섬유, 그리고 PIP 공정으로 만들어지는 세라믹섬유복합소재 기술에 대하여 논하였다. 더불어 나노다공구조를 갖는 탄화규소 중공사와 같이 폴리카보실란을 이용해 구현할 수 있는 복잡구조의 탄화규소 소재 개발 예를 소개하였다.

Keywords

References

  1. Colombo, P., Mera, G., Riedel, R., and Soraru, G., "Polymer-Derived Ceramics: 40 years of Research and Innovation in Advanced Ceramics," Journal of the American Ceramic Society, Vol. 93, No. 7, 2010, pp. 1805-1837.
  2. Freitag, D.W., and Richerson, D.W., Opportunities for Advanced Ceramics, to Meet the Needs of the Industries of the Future, DOE/ORO/2076, 1998.
  3. Yajima, S., Hesegawa, Y., Okamura, K., and Matsuzawa, T., "Development of High Tensile Strength Silicon Carbide Fiber Using an Organosilicon Polymer Precursor", Nature, Vol. 273, No. 15, 1978, pp. 525-527. https://doi.org/10.1038/273525a0
  4. Shin, D.G., Riu, D.H., Kim, Y.H., Kim, H.R., Park, H.S., and Kim, H.E., "Characterization of SiC Fiber Derived from Polycarbosilanes with Controlled Molecular Weight", Journal of the Korean Ceramic Society, Vol. 42, No. 8, 2005, pp. 593-598. https://doi.org/10.4191/KCERS.2005.42.8.593
  5. Bunsell, A.R., and Berger, M.-H., "Fine Ceramic Fibers," Marcel Dekker Incorporated, 1999.
  6. Ishikawa, T., Advances in Polymer Science, Vol. 178, 2005, pp. 109-144.
  7. Shin, D.G., "Fabrication of Dense Carbon Fiber Reinforced SiC Composites by Controlling the Rheology of PCS Solution", Asian Journal of Chemistry, Vol. 26, No. 6, 2014, pp. 1553-1556.
  8. Ly, H.Q., Taylor, R., and Day, R.J., "Carbon Fiber-reinforced CMCs by PCS Infiltration", Journal of Materials Science, Vol. 36, 2001, pp. 4027-4035. https://doi.org/10.1023/A:1017990709819
  9. Jung, E., Lee, Y.J., Kim, Y., Kwon, W.T., Shin, D.G., and Kim, S.R., "Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support," Korean Chemical Engineering Research, Vol. 53, 2015, pp. 425-30. https://doi.org/10.9713/kcer.2015.53.4.425
  10. Colombo, P., Paulson, T.E., and Pantano, C.G., "Synthesis of Silicon Carbide Thin Films with Polycarbosilane (PCS)", Journal of the American Ceramic Society, Vol. 80, No. 9, 1997, pp. 2333-2340. https://doi.org/10.1111/j.1151-2916.1997.tb03124.x
  11. Kim, J.I., Lee, Y.J., Kim, S.-R., Kim, Y.-H., Kim, J.I., Woo, C.H., and Choi, D.J., "SiOC Coating on Stainless Steel using Polyphenyl Carbosilane and its Anti-Corrosion Properties," Korean Journal of Materials Research, Vol. 21, No. 1, 2011, pp. 8-14. https://doi.org/10.3740/MRSK.2011.21.1.008
  12. Lee, Y.J., Lee, J.H., Shin, D.G., Noviyanto, A., Lee, H.M., Nishimura, T., Jang, B.K., Kwon, W.T., Kim, Y., Kim, S., and Han, Y.H., "Phase Transformation on Spark Plasma Sintered Dense Polycarbosilane-derived SiC without Additive" Scripta Materialia,, InPress (2017).
  13. Ya, L., Li, H., Fan, D., Su, C., Fasel, R. Riedel, "Synthesis, Structures, and Properties of Bulk Si(O)C Ceramics from Polycarbosilane," Journal of the American Ceramic Society, Vol. 92, No. 10, 2009, pp. 2175-2181. https://doi.org/10.1111/j.1551-2916.2009.03184.x
  14. Shin, D.-G., Kong, E.-B., Cho, K.-Y., Kwon, W.-T., Kim, Y., Kim, S.-R., Hong, J.-S., and Riu, D.-H., "Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane," Journal of the Korean Ceramic Society, Vol. 50, No. 4, 2013, 301-307. https://doi.org/10.4191/kcers.2013.50.4.301
  15. Shin, D.-G., Jin, E.-J., Lee, Y.-J., Kwon, W.-T., Kim, Y., Kim, S.-R., and Riu, D.-H., "$TiO_2-SiO_2$ Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution," Korean Chemical Engineering Research, Vol. 53, No. 3, 2015, pp. 276-281. https://doi.org/10.9713/kcer.2015.53.3.276
  16. Lee, Y.J., Kim, Y., Kwon, W.T., Kim, S.R., and Riu, D.H., "Formation of ZSM-5 on Silicon Carbide Fibers for Catalytic Support", Materials Science and Engineering: B, Vol. 6, No. 9-10, 2016, pp. 211-217.
  17. Shin, D.G., Cho, K.Y., and Riu, D.H., "SA Porous SiC Mat for a Gas Radiation Application by Melt-Blown of the Polycarbosilane", Asian Journal of Chemistry, Vol. 24, No. 9, 2012, pp. 4225-4231.
  18. Khishigbayar, K.E., Seo, J.M., and Cho, K.Y., "Heating Behavior of Silicon Carbide Fiber Mat under Microwave," Journal of the Korean Ceramic Society, Vol. 53, No. 6, 2016, pp. 707-711. https://doi.org/10.4191/kcers.2016.53.6.707
  19. Cao, F., Li, X.D., Peng, P., Feng, C.X., Wang, J., and Kim, D.P., "Facile Synthesis of Melt-spinnable Polyaluminocarbosilane using Low-softening-point Polycarbosilane for Si-C-Al-O Fibers", Journal of Materials Chemistry, Vol. 12, 2002, pp. 606-610. https://doi.org/10.1039/b106868g
  20. Shin, D.G., Kong, E.B., Riu, D.H., Kim, Y., Park, H.S., and Kim, H.E., "Dense Polycrystalline SiC Fiber Derived from Aluminum Doped Polycarbosilane by One-pot Synthesis", Journal of the Korean Ceramic Society, Vol. 44, No. 7, 2007, pp. 393-402. https://doi.org/10.4191/KCERS.2007.44.7.393
  21. Bertorelli Paul "GE makes $200M Investment in Silicon Carbide Manufacturing Factories," American Ceramic Society Bulletin, Vol 95, No. 1, 2016, p 12.
  22. Park, J.Y., Kang, S.M., Kim, W.J., and Ryu, W.S., "Characterization of the SiCf/SiC Composite Fabricated by the Whisker Growing Assisted CVI Process," Key Engineering Materials, Vol. 287, 2005, pp. 200-205. https://doi.org/10.4028/www.scientific.net/KEM.287.200
  23. Besmann, T.M., McKaughlin, J.C., and Lin, H., "Fabrication of Ceramic Composites : Forced CVI", Journal of Nuclear Materials, Vol. 219, 1995, pp. 31-35. https://doi.org/10.1016/0022-3115(94)00395-5