DOI QR코드

DOI QR Code

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature

폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발

  • Received : 2017.02.22
  • Accepted : 2017.04.20
  • Published : 2017.04.30

Abstract

The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.

본 연구의 목적은 고온 산화성 분위기하에서 기계적물성이 우수한 탄화규소섬유(SiC Fiber)를 파일롯-규모로의 생산 제조공정을 개발하는 것이다. 프리세라믹 전구체로서 폴리카보실란(PCS)을 사용하여 탄화규소섬유를 제조하였다. 연속성의 PCS 섬유는 $300{\sim}350^{\circ}C$에서 PCS를 용융한 후에 용융방사로부터 얻었다. 열처리 전에 섬유의 불융화를 위하여 공기 분위기하에서 경화를하였다. 경화 전, 후에 측정한 FT-IR 스펙트라 피크로 부터 경화도를 계산하였다. 탄화규소섬유의 물성은 경화도에 따라 크게 영향을 받았다. 본 개발에서 열처리 중 섬유의 장력 조절로 우수한 물성을 갖는 탄화규소섬유를 얻었다. 탄화규소섬유의 화학조성과 기계적물성은 안정화섬유의 열처리시의 이송속도에 영향을 받았다. 탄화규소섬유를 공기분위기하 $1000^{\circ}C$에서 1분부터 50시간까지 노출한 후에 인장시험을 수행하였다. 그 결과 인장강도는 약 60%까지 감소함을 보여주었다. 장시간 노출시험시 낮은 인장 강도값을 나타내는 섬유는 화학성분 분석시 섬유의 표면에 많은 탄소량을 함유하고 있었다.

Keywords

References

  1. www.geaviation.com(Feb. 27, 2012).
  2. http/www.cfmaeroengines.com, LEAP-Engines-CFM International
  3. S. Yajima, Y. Haseegawa, J. Hayashi, and M. Iimura, "Synthesis of Continuous Silicon Carbide Fiber with High Tensile Strength and High Young's Modulus, Part 1. Synthesis of Polycarbosilane as Precursor", Journal of Materials Science, Vol. 13, 1978, pp. 2569-2576.
  4. (www.coiceramics.com/pdfs/Sylramic.pdf
  5. www.coiceramics.com/pdfs/Nicalon.pdf
  6. www.ube-ind.co.jp
  7. A. Idesaki, M. Narisawa, K. Okamura, M. Sugimpto, S. Tanaka, Y. Morita, T. Seguchi, and M. Itoh, "Fine SiC Fiber Synthesized from Organosilicon Polymers: Relationship between Spinning Temperature and Melt Viscosity of Precursor Polymers", Journal of Materials Science, Vol. 36, 2001, pp. 5565-5569. https://doi.org/10.1023/A:1012549228826
  8. T. Ouyang and C. Balan, "Modeling of Fiber Spinning Flows of Pre-ceramic Polymer Melts", U.P.B. Sci. Bull., Series B, Vol. 72, Iss. 4. 2010.
  9. Y. Wang, Y. Song, C. Feng, Z. Zou, Y. Zhao, and J. Long, "Studies of Spinnibility of Polycarbosilane and Spinning Technology of its Continuous Fibers", Key Engineering Materials, Vols. 164-165, 1999, pp. 33-38. Trans Tech Publications Swizerland.
  10. H. Ichikawa, H. Teranishi, and T. Ishikawa, "Effects of Curing on Mechanical Properties of SiC Fiber(Nicalon)", Journal of Materials Science Letters Vol. 6, 1987, pp. 420-422. https://doi.org/10.1007/BF01756783
  11. H. Q. Ly, R. Taylor, and R. J. Day, "Conversion of Polycarbosilane(PCS) to SiC-based Ceramic Part 1. Characterisation of PCS and Curing Products," Journal of Materials Science, Vol. 36, 2001, pp. 4037-4043. https://doi.org/10.1023/A:1017942826657
  12. H. Wang, X. D. Li, X.-X. Li, B. Zhu, and D. P. Kim, "The Kinetics of Oxidation of Polycarbosilane Fibers", Korean Journal of Chemical Engineering, Vol. 21, No. 4, 2004, pp. 901-904. https://doi.org/10.1007/BF02705537
  13. H. Suwardie, D. M. Kalyon, and S. Kovenklioglu, "Thermal Behavior and Curing Kinetics of Poly(carbosilane)", Journal of Applied Polymer Science, Vol. 42, 1991, pp. 108701095.
  14. Z. Chu, C. Feng, Y. Song, Y. Wang, X. D. Li, and J. Xiao, "Effect of Oxygen Content on Tensile Strength of Polymer-derved SiC fibers", Transactions of Nonferrous Metals Society of China, Vol. 12, No. 5, Oct. 2002.
  15. G. Chollon, R. Pailler, and R. Naslain, "Thermal Stability of PCS-Derived SiC Fiber with a Low Oxygen Content(Hi-Nicalon)", Journal of Materials Science, Vol. 32, 1997, pp. 327-347. https://doi.org/10.1023/A:1018541030308
  16. G. D. Soraru, F. Babonneau, and J. D. Mackenzie, "Structural Evolutions from Polycarbosilane to SiC Ceramic", Journal of Materials Science, Vol. 25, 1990, pp. 3886-3893. https://doi.org/10.1007/BF00582455
  17. K. Morishita, T. Matsumoto, S. Ochiai, H. Okuda, T. Ishikawa, and M. Sato, "Degration Mechanism of Armorphous Silicon Carbide Fiber due to Air-exposure at High Temperature", Materials Transactions, Vol. 48, No. 2, 2007, pp. 111-116. https://doi.org/10.2320/matertrans.48.111

Cited by

  1. Fabrication of Carbon-Silicon Carbide Core-Shell Composite Fibers vol.66, pp.8, 2021, https://doi.org/10.1134/s0036023621080088