DOI QR코드

DOI QR Code

Microbial Diversity during Fermentation of Sweet Paste, a Chinese Traditional Seasoning, Using PCR-Denaturing Gradient Gel Electrophoresis

  • Mao, Ping (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Hu, Yuanliang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liao, Tingting (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Wang, Zhaoting (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhao, Shumiao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liang, Yunxiang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Hu, Yongmei (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
  • Received : 2016.05.09
  • Accepted : 2017.01.09
  • Published : 2017.04.28

Abstract

The aim of this study was to elucidate the changes in the microbial community and biochemical properties of a traditional sweet paste during fermentation. PCR-denaturing gradient gel electrophoresis (DGGE) analysis showed that Aspergillus oryzae was the predominant species in the koji (the fungal mixture), and the majority of the fungi isolated belonged to two Zygosaccharomyces species in the mash. The bacterial DGGE profiles revealed the presence of Bacillus subtilis during fermentation, and Lactobacillus acidipiscis, Lactobacillus pubuzihii, Lactobacillus sp., Staphylococcus kloosi, and several uncultured bacteria were also detected in the mash after 14 days of main fermentation. Additionally, during main fermentation, amino-type nitrogen and total acid increased gradually to a maximum of $6.77{\pm}0.25g/kg$ and $19.10{\pm}0.58g/kg$ (30 days) respectively, and the concentration of reducing sugar increased to $337.41{\pm}3.99g/kg$ (7 days). The 180-day fermented sweet paste contained $261.46{\pm}19.49g/kg$ reducing sugar and its pH value remained at around 4.65. This study has used the PCR-DGGE technique to demonstrate the microbial community (including bacteria and fungi) in sweet paste and provides useful information (biochemical properties) about the assessment of the quality of sweet paste throughout fermentation.

Keywords

References

  1. Zhang Y, Huang M, Tian H, Sun B, Wang J, Li Q. 2014. Preparation and aroma analysis of Chinese traditional fermented flour paste. Food Sci. Biotechnol. 23: 49-58. https://doi.org/10.1007/s10068-014-0007-6
  2. Tanaka Y, Watanabe J, Mogi Y. 2012. Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiol. 31: 100-106. https://doi.org/10.1016/j.fm.2012.02.005
  3. Park HK, Gil B, Kim JK. 2002. Characteristics of taste components of commercial soybean paste. Food Sci. Biotechnol. 11: 376-379.
  4. Yoo SK, Kang SM, Noh YS. 2000. Quality properties on soy bean pastes made with microorganisms isolated from traditional soy bean pastes. Korea Sci. 32: 1266-1270.
  5. Ferris MJ, Muyzer G, Ward DM. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
  6. Schabereitergurtner C, Pinar G, Lubitz W, Rolleke S. 2001. Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J. Microbiol. Methods 47: 345-354. https://doi.org/10.1016/S0167-7012(01)00344-X
  7. Wei CL, Chao SH, Tsai WB, Lee PS, Tsau NH, Chen JS, et al. 2013. Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method. Food Microbiol. 33: 252-261. https://doi.org/10.1016/j.fm.2012.10.001
  8. Ahmadsah LS, Min SG, Han SK, Kim HY. 2015. Effect of low salt concentrations on microbial changes during kimchi fermentation monitored by PCR-DGGE and their sensory acceptance. J. Microbiol. Biotechnol. 25: 2049-2057. https://doi.org/10.4014/jmb.1506.06058
  9. Kim TW, Lee JH, Kim SE, Park MH, Chang HC, Kim HY. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
  10. Zhao JX, Dai XJ, Liu XM, Chen HQ, Tang J, Zhang H, Chen W. 2009. Changes in microbial community during Chinese traditional soybean paste fermentation. Int. J. Food Sci. Technol. 44: 2526-2530. https://doi.org/10.1111/j.1365-2621.2009.02079.x
  11. Xiong XM, Hu YL, Yan NF, Huang YN, Peng N, Liang YX, Zhao SM. 2014. PCR-DGGE a nalysis of t he microbial communities in three different Chinese "baiyunbian" liquor fermentation starters. J. Microbiol. Biotechnol. 24: 1088-1095. https://doi.org/10.4014/jmb.1401.01043
  12. De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P. 2006. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol. 23: 809-813. https://doi.org/10.1016/j.fm.2006.01.006
  13. Wu Q, Chen L, Xu Y. 2013. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. Int. J. Food Microbiol. 166: 323-330. https://doi.org/10.1016/j.ijfoodmicro.2013.07.003
  14. Lioe HN, Selamat J, Yasuda M. 2010. Soy sauce and its umami taste: a link from the past to current situation. J. Food Sci. 75: R71-R76. https://doi.org/10.1111/j.1750-3841.2010.01529.x
  15. Wang HY, Gao YB, Fan QW, Xu Y. 2011. Characterization and comparison of microbial community of different typical Chinese liquor daqus by PCR-DGGE. Lett. Appl. Microbiol. 53: 134-140. https://doi.org/10.1111/j.1472-765X.2011.03076.x
  16. Liu X, Guo KL, Zhang HX. 2012. Determination of microbial diversity in daqu, a fermentation starter culture of Maotai liquor, using nested PCR-denaturing gradient gel electrophoresis. World J. Microbiol. Biotechnol. 28: 2375-2381. https://doi.org/10.1007/s11274-012-1045-y
  17. Hirt B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26: 365-369. https://doi.org/10.1016/0022-2836(67)90307-5
  18. Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8: 4321-4326. https://doi.org/10.1093/nar/8.19.4321
  19. Wilson K. 1987. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 2: 2.4.
  20. May LA, Smiley B, Schmidt MG. 2001. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can. J. Microbiol. 47: 829-841. https://doi.org/10.1139/w01-086
  21. Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, et al. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178: 5636-5643. https://doi.org/10.1128/jb.178.19.5636-5643.1996
  22. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP. 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 2578-2585. https://doi.org/10.1128/AEM.67.6.2578-2585.2001
  23. Heuer H, Smalla K, van Elsas JD, Trevors JT, Wellington EM. 1997. Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities, pp. 353-373. In van Elsas JD, Wellington EMH, Trevors JT (eds.). Modern Soil Microbiology. Marcel Dekker, Inc., New York, NY. USA.
  24. Yu ZT, Morrison M. 2004. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70: 4800-4806. https://doi.org/10.1128/AEM.70.8.4800-4806.2004
  25. Cai WC, Yuan HJ. 1982. Common Chemoanalytic Methods of Biosubstances, pp. 8-9 and 59-60. Science Press, Bejing, China.
  26. Sumner JB. 1925. A more specific reagent for the determination of sugar in urine. J. Biol. Chem. 65: 393-395.
  27. Teixeira RSS, da Silva ASA, Ferreira-Leitão VS, da Silva Bon EP. 2012. Amino acids interference on the quantification of reducing sugars by the 3,5-dinitrosalicylic acid assay mislead carbohydrase activity measurements. Carbohydr. Res. 363: 33-37. https://doi.org/10.1016/j.carres.2012.09.024
  28. Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  29. Wang C, Shi D, Gong G. 2008. Microorganisms in Daqu: a starter culture of Chinese Maotai-flavor liquor. World J. Microbiol. Biotechnol. 10: 2183-2190.
  30. Wu ZY, Zhang WX, Zhang QS, Hu C, Wang R, Liu ZH. 2009. Developing new sacchariferous starters for liquor production based on functional strains isolated from the pits of several famous Luzhou-flavor liquor brewers. J. Inst. Brew. 115: 111-115. https://doi.org/10.1002/j.2050-0416.2009.tb00354.x
  31. Feng YZ, Cui C, Zhao HF, Gao XL, Zhao MM, Sun WZ. 2013. Effect of koji fermentation on generation of volatile compounds in soy sauce production. Int. J. Food Sci. Technol. 48: 609-619. https://doi.org/10.1111/ijfs.12006
  32. Zhao GZ, Yao YP, Wang CL, Hou LH, Cao XH. 2013. Comparative genomic analysis of Aspergillus oryzae strains 3.042 and RIB40 for soy sauce fermentation. Int. J. Food Microbiol. 164: 148-154. https://doi.org/10.1016/j.ijfoodmicro.2013.03.027
  33. Li ZM, Bai ZH, Wang DL, Zhang WJ, Zhang M, Lin F, et al. 2014. Cultivable bacterial diversity and amylase production in three typical daqus of Chinese spirits. Int. J. Food Sci. Technol. 49: 776-786. https://doi.org/10.1111/ijfs.12365
  34. Lee SJ, Ahn B. 2009. Comparison of volatile components in fermented soybean pastes using simultaneous distillation and extraction (SDE) with sensory characterisation. Food Chem. 114: 600-609. https://doi.org/10.1016/j.foodchem.2008.09.091
  35. Chen YS, Miyashita M, Suzuki K, Sato H, Hsu JS, Yanagida F. 2010. Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia). Int. J. Syst. Evol. Microbiol. 60: 1914-1917. https://doi.org/10.1099/ijs.0.016873-0
  36. Tanasupawat S, Shida O, Okada S, Komagata K. 2000. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int. J. Syst. Evol. Microbiol. 50: 1479-1485. https://doi.org/10.1099/00207713-50-4-1479
  37. Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  38. Hui YH, Meuniergoddik L, Hansen A, Josephsen J. 2004. Handbook of Food and Beverage Fermentation Technology, pp. 514-548. Marcel Derker, Inc., New York. USA.
  39. Ouoba LI, Diawara B, Annan NT, Poll L, Jakobsen M. 2005. Volatile compounds of Soumbala, a fermented African locust bean (Parkia biglobosa) food condiment. J. Appl. Microbiol. 99: 1413-1421. https://doi.org/10.1111/j.1365-2672.2005.02722.x
  40. Gilardi G, Baudino M, Garibaldi A, Gullino ML. 2011. Efficacy of biocontrol agents and natural compounds against powdery mildew of zucchini. Phytoparasitica 40: 147-155.
  41. Jeyaram K, Singh WM, Premarani T, Devi AR, Chanu KS, Talukdar NC, Singh MR. 2008. Molecular identification of dominant microflora associated with 'Hawaijar' - a traditional fermented soybean (Glycine max (L.)) food of Manipur, India. Int. J. Food Microbiol. 122: 259-268. https://doi.org/10.1016/j.ijfoodmicro.2007.12.026
  42. Onda T, Yanagida F, Tsuji M, Shinohara T, Yokotsuka K. 2003. Time series analysis of aerobic bacterial flora during miso fermentation. Lett. Appl. Microbiol. 37: 162-168. https://doi.org/10.1046/j.1472-765X.2003.01371.x
  43. Erbas M, Uslu MK, Erbas MO, Certel M. 2006. Effects of fermentation and storage on the organic and fatty acid contents of tarhana, a Turkish fermented cereal food. J. Food Compost. Anal. 19: 294-301. https://doi.org/10.1016/j.jfca.2004.12.002

Cited by

  1. Molecular Phylogeny and Diversity of the Salt-Tolerant Alkaliphilic Actinobacteria Inhabiting Coastal Gujarat, India vol.35, pp.9, 2017, https://doi.org/10.1080/01490451.2018.1471107
  2. Molecular Phylogeny and Diversity of the Salt-Tolerant Alkaliphilic Actinobacteria Inhabiting Coastal Gujarat, India vol.35, pp.9, 2017, https://doi.org/10.1080/01490451.2018.1471107
  3. Comparative Genomics of Lactobacillus acidipiscis ACA-DC 1533 Isolated From Traditional Greek Kopanisti Cheese Against Species Within the Lactobacillus salivarius Clade vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.01244