DOI QR코드

DOI QR Code

The American Cockroach Peptide Periplanetasin-2 Blocks Clostridium Difficile Toxin A-Induced Cell Damage and Inflammation in the Gut

  • Hong, Ji (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Zhang, Peng (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Yoon, I Na (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kang, Jin Ku (Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine) ;
  • Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
  • Received : 2016.12.15
  • Accepted : 2017.02.02
  • Published : 2017.04.28

Abstract

Clostridium difficile, which causes pseudomembranous colitis, releases toxin A and toxin B. These toxins are considered to be the main causative agents for the disease pathogenesis, and their expression is associated with a marked increase of apoptosis in mucosal epithelial cells. Colonic epithelial cells are believed to form a physical barrier between the lumen and the submucosa, and abnormally increased mucosal epithelial cell apoptosis is considered to be an initial step in gut inflammation responses. Therefore, one approach to treating pseudomembranous colitis would be to develop agents that block the mucosal epithelial cell apoptosis caused by toxin A, thus restoring barrier function and curing inflammatory responses in the gut. We recently isolated an antimicrobial peptide, Periplanetasin-2 (Peri-2, YPCKLNLKLGKVPFH) from the American cockroach, whose extracts have shown great potential for clinical use. Here, we assessed whether Peri-2 could inhibit the cell toxicity and inflammation caused by C. difficile toxin A. Indeed, in human colonocyte HT29 cells, Peri-2 inhibited the toxin A-induced decrease in cell proliferation and ameliorated the cell apoptosis induced by this toxin. Moreover, in the toxin A-induced mouse enteritis model, Peri-2 blocked the mucosal disruption and inflammatory response caused by toxin A. These results suggest that the American cockroach peptide Peri-2 could be a possible drug candidate for addressing the pseudomembranous colitis caused by C. difficile toxin A.

Keywords

References

  1. Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500-503. https://doi.org/10.1038/375500a0
  2. Just I, Wilm M, Selzer J, Rex G, von Eichel-Streiber C, Mann M, Aktories K. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270: 13932-13936. https://doi.org/10.1074/jbc.270.23.13932
  3. Just I, Selzer J, von Eichel-Streiber C, Aktories K. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95: 1026-1031. https://doi.org/10.1172/JCI117747
  4. Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, Lamont JT. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  5. Kim H, Rhee SH, Kokkotou E, Na X, Savidge T, Moyer MP, et al. 2005. Clostridium difficile t oxin A r egulates induc ible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245. https://doi.org/10.1074/jbc.M413842200
  6. Kim H, Rhee SH, Pothoulakis C, Lamont JT. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  7. Kokkotou E, Espinoza DO, Torres D, Karagiannides I, Kosteletos S, Savidge T, et al. 2009. Melanin-concentrating hormone (MCH) modulates C difficile toxin A-mediated enteritis in mice. Gut 58: 34-40. https://doi.org/10.1136/gut.2008.155341
  8. Kokkotou E, Moss AC, Michos A, Espinoza D, Cloud JW, Mustafa N, et al. 2008. Comparative efficacies of rifaximin and vancomycin for treatment of Clostridium difficile-associated diarrhea and prevention of disease recurrence in hamsters. Antimicrob. Agents Chemother. 52: 1121-1126. https://doi.org/10.1128/AAC.01143-07
  9. Pothoulakis C, Lamont JT. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178-G183. https://doi.org/10.1152/ajpgi.2001.280.2.G178
  10. Pothoulakis C. 2000. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann. NY Acad. Sci. 915: 347-356.
  11. Warny M, Keates AC, Keates S, Castagliuolo I, Zacks JK, Aboudola S, et al. 2000. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105: 1147-1156. https://doi.org/10.1172/JCI7545
  12. Pothoulakis C, Castagliuolo I, Leeman SE, Wang CC, Li H, Hoffman BJ, Mezey E. 1998. Substance P receptor expression in intestinal epithelium in Clostridium difficile toxin A enteritis in rats. Am. J. Physiol. 275: G68-G75. https://doi.org/10.1152/ajpcell.1998.275.1.C68
  13. Kang JK, Hwang JS, Nam HJ, Ahn KJ, Seok H, Kim SK, et al. 2011. The insect peptide coprisin prevents Clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob. Agents Chemother. 55: 4850-4857. https://doi.org/10.1128/AAC.00177-11
  14. Playford RJ. 1995. Peptides and gastrointestinal mucosal integrity. Gut 37: 595-597. https://doi.org/10.1136/gut.37.5.595
  15. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805-816. https://doi.org/10.1016/0092-8674(93)90499-G
  16. Izawa H, Yamamoto H, Damdinsuren B, Ikeda K, Tsujie M, Suzuki R, et al. 2005. Effects of p21cip1/waf1 overexpression on growth, apoptosis and differentiation in human colon carcinoma cells. Int. J. Oncol. 27: 69-76.
  17. Hing TC, Ho S, Shih DQ, Ichikawa R, Cheng M, Chen J, et al. 2013. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice. Gut 62: 1295-1305. https://doi.org/10.1136/gutjnl-2012-302180
  18. Li N, Lu R, Yu Y, Lu Y, Huang L, Jin J, et al. 2016. Protective effect of Periplaneta americana extract in ulcerative colitis rats induced by dinitrochlorobenzene and acetic acid. Pharm. Biol. 54: 2560-2567. https://doi.org/10.3109/13880209.2016.1170862
  19. Wang XY, He ZC, Song LY, Spencer S, Yang LX, Peng F, et al. 2011. Chemotherapeutic effects of bioassay-guided extracts of the American cockroach, Periplaneta americana. Integr. Cancer Ther. 10: NP12-NP23. https://doi.org/10.1177/1534735411413467
  20. Jiang Y, Wang X, Jin C, Chen X, Li J, Wu Z, et al. 2006. Inhibitory effect of Periplaneta americana extrac t on 3LL lung cancer in mice. Zhongguo Fei Ai Za Zhi 9: 488-491.
  21. Zhang HW, Wei LY, Zhao G, Yang YJ, Liu SZ, Zhang ZY, et al. 2016. Periplaneta americana extract used in patients with systemic inflammatory response syndrome. World J. Emerg. Med. 7: 50-54. https://doi.org/10.5847/wjem.j.1920-8642.2016.01.009
  22. Zhang H, Wei L, Zhang Z, Liu S, Zhao G, Zhang J, Hu Y. 2013. Protective effect of Periplaneta americana extract on intestinal mucosal barrier function in patients with sepsis. J. Tradit. Chin. Med. 33: 70-73. https://doi.org/10.1016/S0254-6272(13)60103-X
  23. Tonk M, Vilcinskas A, Rahnamaeian M. 2016. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl. Microbiol. Biotechnol. 100: 7397-7405. https://doi.org/10.1007/s00253-016-7718-y
  24. Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. 2016. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291: 3209-3223. https://doi.org/10.1074/jbc.M115.682856
  25. Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, et al. 2014. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem. Biophys. Res. Commun. 448: 292-297. https://doi.org/10.1016/j.bbrc.2014.04.105
  26. Kang BR, Kim H, Nam SH, Yun EY, Kim SR, Ahn MY, et al. 2012. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep. 45: 85-90. https://doi.org/10.5483/BMBRep.2012.45.2.85
  27. Braun F, Bertin-Ciftci J, Gallouet AS, Millour J, Juin P. 2011. Serum-nutrient starvation induces cell death mediated by Bax and Puma that is counteracted by p21 and unmasked by Bcl-x(L) inhibition. PLoS One 6: e23577. https://doi.org/10.1371/journal.pone.0023577
  28. Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Lu LF, et al. 2015. Antimicrobial peptide, lumbricusin, ameliorates motor dysfunction and dopaminergic neurodegeneration in a mouse model of Parkinson's disease. J. Microbiol. Biotechnol. 25: 1640-1647. https://doi.org/10.4014/jmb.1507.07011
  29. Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM, Liu RM. 2007. Glutathione suppresses TGF-beta-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. Am. J. Physiol. Lung Cell Mol. Physiol. 293: L1281-L1292. https://doi.org/10.1152/ajplung.00128.2007
  30. Ruch RJ, Crist KA, Klaunig JE. 1989. Effects of culture duration on hydrogen peroxide-induced hepatocyte toxicity. Toxicol. Appl. Pharmacol. 100: 451-464. https://doi.org/10.1016/0041-008X(89)90293-7
  31. Nam ST, Seok H, Kim DH, Nam HJ, Kang JK, Eom JH, et al. 2012. Clostridium difficile toxin A inhibits erythropoietin receptor-mediated colonocyte focal adhesion through inactivation of Janus kinase-2. J. Microbiol. Biotechnol. 22: 1629-1635. https://doi.org/10.4014/jmb.1207.07063
  32. Nam HJ, Oh AR, Nam ST, Kang JK, Chang JS, Kim DH, et al. 2012. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation. J. Pept. Sci. 18: 650-656. https://doi.org/10.1002/psc.2437

Cited by

  1. The American cockroach peptide periplanetasin‐4 inhibits Clostridium difficile toxin A‐induced cell toxicities and inflammatory responses in the mouse gut vol.23, pp.11, 2017, https://doi.org/10.1002/psc.3046
  2. Anti-Inflammatory Activity of Antimicrobial Peptide Periplanetasin-5 Derived from the Cockroach Periplaneta americana vol.30, pp.9, 2020, https://doi.org/10.4014/jmb.2004.04046
  3. Periplaneta americana Oligosaccharides Exert Anti-Inflammatory Activity through Immunoregulation and Modulation of Gut Microbiota in Acute Colitis Mice Model vol.26, pp.6, 2017, https://doi.org/10.3390/molecules26061718