DOI QR코드

DOI QR Code

Genomic Analysis of a Freshwater Actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang

  • Kim, Suhyun (Department of Biological Sciences, Inha University) ;
  • Kang, Ilnam (Department of Biological Sciences, Inha University) ;
  • Cho, Jang-Cheon (Department of Biological Sciences, Inha University)
  • Received : 2017.01.16
  • Accepted : 2017.02.06
  • Published : 2017.04.28

Abstract

Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilutionto-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain IMCC26207 formed a distinct lineage in the order Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously identified bacterial taxa was "Candidatus Microthrix parvicella" with 16S rRNA gene sequence similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater actinobacterium, is reported with the description of the genome properties and annotation summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. Annotation of the IMCC26207 genome showed several traits of adaptation to living in oligotrophic freshwater environments, such as phosphorus-limited condition. Comparative genomic analysis revealed that the genome of strain IMCC26207 was distinct from that of "Candidatus Microthrix" strains; therefore, we propose the name "Candidatus Limnosphaera aquatica" for this bacterium.

Keywords

References

  1. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 28: 141-155. https://doi.org/10.3354/ame028141
  2. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75: 14-49. https://doi.org/10.1128/MMBR.00028-10
  3. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54: 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
  4. Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl. Environ. Microbiol. 66: 5053-5065. https://doi.org/10.1128/AEM.66.11.5053-5065.2000
  5. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J. 2005. Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microbiol. 71: 5551-5559. https://doi.org/10.1128/AEM.71.9.5551-5559.2005
  6. Eiler A, Zaremba-Niedzwiedzka K, Martinez-Garcia M, McMahon KD, Stepanauskas R, Andersson SGE, Bertilsson S. 2014. Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics. Environ. Microbiol. 16: 2682-2698. https://doi.org/10.1111/1462-2920.12301
  7. Garcia SL, McMahon KD, Martinez-Garcia M, Srivastava A, Sczyrba A, Stepanauskas R, et al. 2013. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 7: 137-147. https://doi.org/10.1038/ismej.2012.86
  8. Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, et al. 2014. Comparative single-cell genomics reveals potential ecological niches for the freshwater acl Actinobacteria lineage. ISME J. 8: 2503-2516. https://doi.org/10.1038/ismej.2014.135
  9. Blackall LL, Stratton H, Bradford D, Del Dot T, Sjorup C, Seviour EM, Seviour RJ. 1996. "Candidatus Microthrix parvicella," a filamentous bacterium from activated sludge sewage treatment plants. Int. J. Syst. Bacteriol. 46: 344-346. https://doi.org/10.1099/00207713-46-1-344
  10. Levantesi C, Rossetti S, Thelen K, Kragelund C, Krooneman J, Eikelboom D, et al. 2006. Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environ. Microbiol. 8: 1552-1563. https://doi.org/10.1111/j.1462-2920.2006.01046.x
  11. Rossetti S, Tomei MC, Nielsen PH, Tandoi V. 2005. "Microthrix parvicella", a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol. Rev. 29: 49-64. https://doi.org/10.1016/j.femsre.2004.09.005
  12. McIlroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, et al. 2013. Metabolic model for the filamentous 'Candidatus Microthrix parvicella' based on genomic and metagenomic analyses. ISME J. 7: 1161-1172. https://doi.org/10.1038/ismej.2013.6
  13. Allgaier M, Grossart H-P. 2006. Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl. Environ. Microbiol. 72: 3489-3497. https://doi.org/10.1128/AEM.72.5.3489-3497.2006
  14. Annika CM, Murray AE, Fritsen CH. 2007. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol. Ecol. 59: 274-288. https://doi.org/10.1111/j.1574-6941.2006.00220.x
  15. Cho J-C, Giovannoni SJ. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70: 432-440. https://doi.org/10.1128/AEM.70.1.432-440.2004
  16. Connon SA, Giovannoni SJ. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68: 3878-3885. https://doi.org/10.1128/AEM.68.8.3878-3885.2002
  17. Davis HC, Guillard RR. 1958. Relative value of ten genera of micro-organisms as foods for oyster and clam larvae. USFWS Fish. Bull. 58: 293-304.
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
  19. Chen I, Markowitz VM, Chu K, Anderson I, Mavromatis K, Kyrpides NC, Ivanova NN. 2013. Improving microbial genome annotations in an integrated database context. PLoS One 8: e54859. https://doi.org/10.1371/journal.pone.0054859
  20. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278. https://doi.org/10.1093/bioinformatics/btp393
  21. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 0955-0964. https://doi.org/10.1093/nar/25.5.0955
  22. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. 2015. HMMER web server: 2015 update. Nucleic Acids Res. 43: W30-W38. https://doi.org/10.1093/nar/gkv397
  23. Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25: 1335-1337. https://doi.org/10.1093/bioinformatics/btp157
  24. Edgar RC. 2007. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8: 18. https://doi.org/10.1186/1471-2105-8-18
  25. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119. https://doi.org/10.1186/1471-2105-11-119
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  27. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363-1371. https://doi.org/10.1093/nar/gkh293
  29. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  30. Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79: 7696-7701. https://doi.org/10.1128/AEM.02411-13
  31. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402. https://doi.org/10.1186/1471-2164-12-402
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81-91. https://doi.org/10.1099/ijs.0.64483-0
  33. Cho JC, Vergin KL, Morris RM, Giovannoni SJ. 2004. Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611-621. https://doi.org/10.1111/j.1462-2920.2004.00614.x
  34. Jin L, Huy H, Kim KK, Lee H-G, Kim H-S, Ahn C-Y, Oh H-M. 2013. Aquihabitans daechungensis gen. nov., sp. nov., an actinobacterium isolated from reservoir water. Int. J. Syst. Evol. Microbiol. 63: 2970-2974. https://doi.org/10.1099/ijs.0.046060-0
  35. Itoh T, Yamanoi K, Kudo T, Ohkuma M, Takashina T. 2011. Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. Int. J. Syst. Evol. Microbiol. 61: 1281-1285. https://doi.org/10.1099/ijs.0.023044-0
  36. Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A. 2009. Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int. J. Syst. Evol. Microbiol. 59: 869-873. https://doi.org/10.1099/ijs.0.005611-0
  37. Matsushika A, Inoue H, Kodaki T, Sawayama S. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84: 37-53. https://doi.org/10.1007/s00253-009-2101-x
  38. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131. https://doi.org/10.1073/pnas.0906412106
  39. Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351. https://doi.org/10.1099/ijs.0.059774-0

Cited by

  1. A Phylogenomic and Molecular Markers Based Analysis of the Class Acidimicrobiia vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.00987
  2. Flavobacterium lacicola sp. nov., isolated from a freshwater lake vol.68, pp.5, 2017, https://doi.org/10.1099/ijsem.0.002712
  3. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase vol.13, pp.9, 2017, https://doi.org/10.1038/s41396-019-0432-x
  4. Lists of names of prokaryotic Candidatus taxa vol.70, pp.7, 2017, https://doi.org/10.1099/ijsem.0.003789
  5. High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang vol.58, pp.11, 2017, https://doi.org/10.1007/s12275-020-0452-2
  6. Comparison of the gut microbiota in the groundwater amphipod Crangonyx islandicus Svavarsson & Kristjánsson, 2006 (Amphipoda: Crangonyctidae) to biofilms in its spring-source habitat vol.40, pp.6, 2017, https://doi.org/10.1093/jcbiol/ruaa065
  7. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge vol.806, pp.p1, 2017, https://doi.org/10.1016/j.scitotenv.2021.150347