DOI QR코드

DOI QR Code

Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate

  • Zeng, Qingwei (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University) ;
  • Wu, Xiaoqin (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University) ;
  • Wang, Jiangchuan (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University) ;
  • Ding, Xiaolei (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University)
  • Received : 2016.11.21
  • Accepted : 2017.01.25
  • Published : 2017.04.28

Abstract

Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

Keywords

References

  1. Batjes NH. 1997. A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling. Soil Use Manage. 13: 9-16. https://doi.org/10.1111/j.1475-2743.1997.tb00550.x
  2. Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  3. Khan MS, Zaidi A, Wani PA. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture - a review. Agron. Sustain. Dev. 27: 29-43. https://doi.org/10.1051/agro:2006011
  4. Thomas L, Hodgson DA, Wentzel A, Nieselt K, Ellingsen TE, Moore J, et al. 2012. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol. Cell. Proteomics 11: M111.013797. https://doi.org/10.1074/mcp.M111.013797
  5. Buch A, Archana G, Naresh Kumar G. 2008. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res. Microbiol. 159: 635-642. https://doi.org/10.1016/j.resmic.2008.09.012
  6. Mander C, Wakelin S, Young S, Condron L, O'Callaghan M. 2012. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol. Biochem. 44: 93-101. https://doi.org/10.1016/j.soilbio.2011.09.009
  7. Goldstein AH, Liu ST. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Nat. Biotechnol. 5: 72-74. https://doi.org/10.1038/nbt0187-72
  8. Mikanova O, Novakova J. 2002. Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rostlinna Vyroba 48: 397-400.
  9. Chen Y, Rekha P, Arun A, Shen F, Lai W-A, Young C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
  10. Patel DK, Archana G, Kumar GN. 2008. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr. Microbiol. 56: 168-174. https://doi.org/10.1007/s00284-007-9053-0
  11. Oubrie A, Rozeboom HJ, Kalk KH, Olsthoorn AJ, Duine JA, Dijkstra BW. 1999. Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO J. 18: 5187-5194. https://doi.org/10.1093/emboj/18.19.5187
  12. Lessie T, Phibbs Jr P. 1984. Alternative pathways of carbohydrate utilization in pseudomonads. Annu. Rev. Microbiol. 38: 359-388. https://doi.org/10.1146/annurev.mi.38.100184.002043
  13. Zeng Q, Wu X, Wen X. 2016. Effects of soluble phosphate on phosphate-solubilizing characteristics and expression of gcd gene in Pseudomonas frederiksbergensis JW-SD2. Curr. Microbiol. 72: 198-206. https://doi.org/10.1007/s00284-015-0938-z
  14. Gyaneshwar P, Parekh L, Archana G, Poole P, Collins M, Hutson R, Kumar GN. 1999. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol. Lett. 171: 223-229. https://doi.org/10.1111/j.1574-6968.1999.tb13436.x
  15. Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. 2003. The phosphate starvation stimulon of Corynebacterium glutamicum d etermined by DNA m icroarray analy ses. J. Bacteriol. 185: 4519-4529. https://doi.org/10.1128/JB.185.15.4519-4529.2003
  16. Pragai Z, Allenby NE, O'Connor N, Dubrac S, Rapoport G, Msadek T, Harwood CR. 2004. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J. Bacteriol. 186: 1182-1190. https://doi.org/10.1128/JB.186.4.1182-1190.2004
  17. Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, Vandamme P. 2000. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J. Clin. Microbiol. 38: 3165-3173.
  18. LiPuma JJ, Spilker T, Gill LH, Campbell III PW, Liu L, Mahenthiralingam E. 2001. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 164: 92-96. https://doi.org/10.1164/ajrccm.164.1.2011153
  19. Nishiy ama E, Ohtsubo Y , Nagata Y , Tsuda M. 2010. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ. Microbiol. 12: 2539-2558.
  20. Vermis K, Brachkova M, Vandamme P, Nelis H. 2003. Isolation of Burkholderia cepacia complex genomovars from waters. Syst. Appl. Microbiol. 26: 595-600. https://doi.org/10.1078/072320203770865909
  21. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. 2007. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 73: 7259-7267. https://doi.org/10.1128/AEM.01222-07
  22. Hou L. 2012. Studies on screening of efficient phosphate-solubilizing bacteria in the rhizosphere of pine trees and on their characteristics. Master Thesis, Nanjing Forestry University, Nanjing, China.
  23. Li G-X, Wu X-Q, Ye J-R. 2013. Biosafety and colonization of Burkholderia multivorans WS-FJ9 and its growth-promoting effects on poplars. Appl. Microbiol. Biotechnol. 97: 10489-10498. https://doi.org/10.1007/s00253-013-5276-0
  24. Ames BN. 1966. Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymol. 8: 115-118.
  25. Kang S, Denman SE, Morrison M, Yu Z, McSweeney CS. 2009. An efficient RNA extraction method for estimating gut microbial diversity by polymerase chain reaction. Curr. Microbiol. 58: 464-471. https://doi.org/10.1007/s00284-008-9345-z
  26. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29: 644-652. https://doi.org/10.1038/nbt.1883
  27. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  28. Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28: 27-30. https://doi.org/10.1093/nar/28.1.27
  29. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. https://doi.org/10.1038/nmeth.1226
  30. Audic S, Claverie J-M. 1997. The significance of digital gene expression profiles. Genome Res. 7: 986-995. https://doi.org/10.1101/gr.7.10.986
  31. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-{\Delta}{\Delta}CT$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  32. Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR. 2001. Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc. Natl. Acad. Sci. USA 98: 2262-2267. https://doi.org/10.1073/pnas.051625798
  33. Lam H, Oh D-C, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK. 2009. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325: 1552-1555. https://doi.org/10.1126/science.1178123
  34. Olsiewski PJ, Kaczorowski G, Walsh C. 1980. Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B. J. Biol. Chem. 255: 4487-4494.
  35. Justice SS, Hunstad DA, Harper JR, Duguay AR, Pinkner JS, Bann J, et al. 2005. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J. Bacteriol. 187: 7680-7686. https://doi.org/10.1128/JB.187.22.7680-7686.2005
  36. Kuhad RC, Singh S, Singh A. 2011. Phosphate-solubilizing microorganisms, pp. 65-84. In Singh A, Parmar N, Kuhad RC (eds.). Bioaugmentation, Biostimulation and Biocontrol, 1st Ed. Springer-Verlag, Berlin-Heidelberg. Germany.
  37. Berka TR, Allenza P, Lessie TG. 1984. Hyperinduction of enzymes of the phosphorylative pathway of glucose dissimilation in Pseudomonas cepacia. Curr. Microbiol. 11: 143-148. https://doi.org/10.1007/BF01567339
  38. Farhat MB, Fourati A, Chouayekh H. 2013. Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli. Appl. Biochem. Biotechnol. 170: 1738-1750. https://doi.org/10.1007/s12010-013-0305-0
  39. Liu S-T, Lee L, Tai C-Y, Hung C, Chang Y, Wolfram JH, et al. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J. Bacteriol. 174: 5814-5819. https://doi.org/10.1128/jb.174.18.5814-5819.1992
  40. Reher M, Bott M, Schonheit P. 2006. Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiol. Lett. 259: 113-119. https://doi.org/10.1111/j.1574-6968.2006.00264.x
  41. Tretter L, Adam-Vizi V. 2005. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Phil. Trans. R. Soc. B Biol. Sci. 360: 2335-2345. https://doi.org/10.1098/rstb.2005.1764
  42. Conway T. 1992. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 103: 1-28. https://doi.org/10.1111/j.1574-6968.1992.tb05822.x
  43. Basu A, Phale PS. 2006. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86. FEMS Microbiol. Lett. 259: 311-316. https://doi.org/10.1111/j.1574-6968.2006.00285.x
  44. Elferink MG, Albers SV, Konings WN, Driessen AJ. 2001. Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 39: 1494-1503. https://doi.org/10.1046/j.1365-2958.2001.02336.x
  45. Albers S-V, Elferink MG, Charlebois RL, Sensen CW, Driessen AJ, Konings WN. 1999. Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181: 4285-4291.
  46. Lamarche MG, Wanner BL, Crepin S, Harel J. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32: 461-473. https://doi.org/10.1111/j.1574-6976.2008.00101.x
  47. Antelmann H, Scharf C, Hecker M. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J. Bacteriol. 182: 4478-4490. https://doi.org/10.1128/JB.182.16.4478-4490.2000
  48. Hsieh Y-J, Wanner BL. 2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13: 198-203. https://doi.org/10.1016/j.mib.2010.01.014
  49. Hulett F, Lee J, Shi L, Sun G, Chesnut R, Sharkova E, et al. 1994. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J. Bacteriol. 176: 1348-1358. https://doi.org/10.1128/jb.176.5.1348-1358.1994
  50. Eder S, Shi L, Jensen K, Yamane K, Hulett FM. 1996. A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142: 2041-2047. https://doi.org/10.1099/13500872-142-8-2041
  51. Maddocks SE, Oyston PC. 2008. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: 3609-3623. https://doi.org/10.1099/mic.0.2008/022772-0
  52. Heller KJ, Kadner RJ, Gunther K. 1988. Suppression of the btuB451 mutation by mutations in the tonB gene suggests a direct interaction between TonB and TonB-dependent receptor proteins in the outer membrane of Escherichia coli. Gene 64: 147-153. https://doi.org/10.1016/0378-1119(88)90488-X
  53. Braun V, Mahren S, Ogierman M. 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr. Opin. Microbiol. 6: 173-180. https://doi.org/10.1016/S1369-5274(03)00022-5

Cited by

  1. Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071253
  2. Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review vol.11, pp.None, 2017, https://doi.org/10.3389/fpls.2020.590774
  3. Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi : Gene Expression and Physiological Functions vol.11, pp.None, 2017, https://doi.org/10.3389/fmicb.2020.588605
  4. Impact of Sugarcane-Legume Intercropping on Diazotrophic Microbiome vol.22, pp.1, 2017, https://doi.org/10.1007/s12355-019-00755-4
  5. Dual transcriptomics and proteomics analyses of the early stage of interaction between Caballeronia mineralivorans PML1(12) and mineral vol.22, pp.9, 2017, https://doi.org/10.1111/1462-2920.15159
  6. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review vol.743, pp.None, 2017, https://doi.org/10.1016/j.scitotenv.2020.140682
  7. Complete genome sequence and analysis of Alcaligenes faecalis strain Mc250, a new potential plant bioinoculant vol.15, pp.11, 2017, https://doi.org/10.1371/journal.pone.0241546
  8. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels vol.10, pp.1, 2017, https://doi.org/10.1186/s13568-020-01032-4
  9. Multifunctional characteristics of Acinetobacter lwoffii Bac109 for growth promotion and colonization in micropropagated sugarcane vol.51, pp.None, 2021, https://doi.org/10.1590/1983-40632021v5169373
  10. Transcriptome profiling of gene expression in phosphate-solubilizing bacterium Acinetobacter sp. strain m01 interacting with melon (Cucumis melo L.) seedling vol.16, pp.1, 2017, https://doi.org/10.1080/17429145.2021.1963866
  11. Transcriptome profiling of gene expression in phosphate-solubilizing bacterium Acinetobacter sp. strain m01 interacting with melon (Cucumis melo L.) seedling vol.16, pp.1, 2017, https://doi.org/10.1080/17429145.2021.1963866
  12. Multi-Omics Reveal the Efficient Phosphate-Solubilizing Mechanism of Bacteria on Rocky Soil vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.761972
  13. Estudio exploratorio de bacterias solubilizadoras de fósforo en dos hábitats asociados con Cedrela montana Moritz ex Turcz vol.6, pp.1, 2017, https://doi.org/10.21931/rb/2021.06.01.20
  14. The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture vol.9, pp.9, 2017, https://doi.org/10.3390/microorganisms9091841
  15. Phosphorus Concentration in Water Affects the Biofilm Community and the Produced Amount of Extracellular Polymeric Substances in Reverse Osmosis Membrane Systems vol.11, pp.12, 2017, https://doi.org/10.3390/membranes11120928