DOI QR코드

DOI QR Code

강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region

  • 박혜인 (국가기상위성센터 차세대위성개발팀) ;
  • 조일성 (강릉원주대학교 복사-위성연구소) ;
  • 김부요 (강릉원주대학교 복사-위성연구소) ;
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 이규태 (강릉원주대학교 복사-위성연구소)
  • Park, Hye-In (Satellite Development Team, National Meteorological Satellite Center) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Kim, Bu-Yo (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Lee, Kyu-Tae (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
  • 투고 : 2016.11.17
  • 심사 : 2017.03.23
  • 발행 : 2017.04.30

초록

이 연구에서는 지표 관측 자료와 위성 자료 그리고 GWNU 단층 복사 모델을 이용하여 맑은 상태의 전천 일사량을 계산하였으며, 전운량에 따라 관측 및 모델의 일사량 값을 비교 분석하였다. 연구 자료는 2012년 강릉원주대학교 복사 관측소의 전천 일사량, 기온, 기압, 습도, 에어로졸 등의 관측 자료와 OMI 센서의 오존전량 자료 그리고 구름의 유무 및 전운량을 판단하기 위하여 자동 전운량 장비인 Skyview 자료를 이용하였다. 전운량이 0 할인 맑은 날의 경우 관측 값과 모델 값이 0.98로 높은 상관계수를 나타내었으나 RMSE가 $36.62Wm^{-2}$로 비교적 높게 나타났다. 이는 Skyview 장비가 얇은 구름이나 박무 및 연무 등의 기상상태를 판단하지 못하였기 때문이다. 흐린 날의 경우 구름의 영향을 보정하기 위해 전운량과 두 값의 차에 대한 비율을 이용한 회귀식을 복사 모델에 적용하였으며, 장비의 오탐지를 제외한 경우 상관계수가 0.92로 높은 상관성을 보였으나 RMSE가 $99.50Wm^{-2}$으로 높은 값을 보였다. 더 정확한 분석을 위해서는 직달 성분의 차폐 유무 및 구름 광학 두께를 포함한 다양한 구름 요소의 추가적인 분석이 요구된다. 이 연구결과는 분 또는 시간에 따른 일사량을 산출하여 일사량이 관측되지 않는 지역에서 유용하게 사용될 수 있다.

Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

키워드

참고문헌

  1. Ahn, S.H., Zo, I.S., Jee, J.B., Kim, B.Y., Lee, D.G., and Lee, K.T., 2016, The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region. Journal of the Korean Earth Science Society, 37(1), 29-39. (in Korean) https://doi.org/10.5467/JKESS.2016.37.1.29
  2. Aksoy, B., 1997, Estimated monthly average global radiation for Turkey and its comparison with observations. Renewable Energy, 10(4), 625-633. https://doi.org/10.1016/S0960-1481(96)00035-3
  3. Bird, R.E. and Riordan, C. 1986, Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres. Journal of Climate and Applied Meteorology, 25, 87-97. https://doi.org/10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2
  4. Brine, D.T. and Iqbal, M. 1983, Diffuse and global solar spectral irradiance under cloudless skies. Solar Energy, 30(5), 447-453. https://doi.org/10.1016/0038-092X(83)90115-9
  5. Cha, J.W., Kim, Y.K., Lee, H.W., Lee, Y.S., and Moon, Y.S., 1988, The Study on Estimation for Surface Radiation by parameter Equation (I): The Estimation for Cloudless Day. Asia-Pacific Journal of Atmospheric Sciences, 34(3), 410-421. (in Korean)
  6. Chen, D. and Nunez, M. 1998, Temporal and spatial variability of total ozone in southwest Sweden revealed by two ground-based instruments. International Journal of Climatology, 18(11), 1237-1246. https://doi.org/10.1002/(SICI)1097-0088(199809)18:11<1237::AID-JOC285>3.0.CO;2-6
  7. Cho, H.K., Jeong, M.J., and Kim, M.J., 2000, Changes in Surface Solar Radiation with Atmospheric Optical Depth. Journal of the Korean Meteorological Society, 36(3), 365-374. (in Korean)
  8. Choi, Y.J., Kim, Y.S., and Sohn B.J., 2011, Comparison of Aerosol Optical Properties from Different Models of Skyradiometer. Atmosphere, 21(3), 311-317. (in Korean)
  9. Chou, M.D., 1991, The derivation of cloud parameters from satellite-measured radiances for use in surface radiation calculations. Journal of the Atmospheric Sciences, 48(13), 1549-1558. https://doi.org/10.1175/1520-0469(1991)048<1549:TDOCPF>2.0.CO;2
  10. Chou, M.D. and Suarez, M.J., 1999, A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606, 15, 40
  11. Garand, L., Turner, D.S., Larocque, M., Bates, J., Boukabara, S., Brunel, P., Chevallier, F., Deblonde, G., Engelen, R., Hollingshead, M., Jackson, D., Jedlovec, G., Joiner, J., Kleespies, T., McKague, D.S., McMillin, L., Moncet, J.L., Pardo, J.R., Rayer, P.J., Salathe, E., Saunders, R., Scott, N.A., Van Delst, P., and Woolf, H. 2001, Radiance and Jacobian intercomparison of radiative transfer model applied to HIRS and AMSU channels. Journal of Geophysical Research, 24, 17-31.
  12. Iqbal, M, 1983, An introduction to solar radiation. Academic Press, New York, 390.
  13. Janjai, S., Pankaew, P., and Laksanaboonsong, J., 2009, A model for calculating hourly global solar radiation from satellite data in the tropics. Applied Energy, 86(9), 1450-1457. https://doi.org/10.1016/j.apenergy.2009.02.005
  14. Jee, J.B., Kim, Y.D., Lee, W.H., and Lee, K.T., 2010, Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea. Journal of the Korean Earth Science Society, 31(7), 720-737. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.720
  15. Jee, J.B., Zo, I.S., Lee, K.T., and Choi, Y.J., 2011a, Distribution of Photovoltaic Energy Including Topography Effect. Journal of the Korean Earth Science Society. 32, 190-199. (in Korean) https://doi.org/10.5467/JKESS.2011.32.2.190
  16. Jee, J.B., Lee, W.H., Zo, I.S., and Lee, K.T., 2011b, Correction of One-layer Solar Radiation Model by Multi-layer Line-by-line Solar Radiation Model. Atmosphere, 21, 151-162. (in Korean)
  17. Kasten, F., 1966, A new table and approximate formula for relative optical air mass. Archiv für Meteorologie, Geophysikund Bioklimatologie, B14, 206-223.
  18. Kim, B.Y., Jee, J.B., Jeong, M.J., Zo, I.S., and Lee, K.T., 2015, Estimation of Total Cloud Amount from Skyviewer Image Data. Journal of the Korean Earth Science Society, 36(4), 330-340. (in Korean) https://doi.org/10.5467/JKESS.2015.36.4.330
  19. Kim, B.Y., Jee, J.B., Zo, I.S., and Lee, K.T., 2016, Cloud cover retrieved from Skyviewer: A validation with human observations. Asia-Pacific Journal of Atmospheric Sciences, 52, 1-10. https://doi.org/10.1007/s13143-015-0083-4
  20. Kim, Y.K., Lee, H.W., Cha, J.W., Lee, Y.S., and Moon, Y.S., 1988, The Study on Estimation for Surface Radiation by Parameter Equation (II): The Estimation for Cloud Day. Asia-Pacific Journal of Atmospheric Sciences, 34(3), 422-431. (in Korean)
  21. Kim, Y.M., Kim, J., and Cho, H.K., 2008, Development of Objective Algorithm for Cloudiness using All-Sky Digital Camera. Atmosphere, 18(1), 1-14. (in Korean)
  22. Lee, K.T. and Jee, J.B., 2000, Scattering effects of UV-B and Longwave Radiation by Clouds. Journal of the Korean Meteorological Society, 36(5), 527-536. (in Korean)
  23. Lee, K.T., Jee, J.B., Lee, W.H., and Shin, I.C., 2004, Variations of the Solar Radiation and Simulated Precipitation with the Properties of Ice Crystal. Journal of the Korean Meteorological Society, 40(1), 17-28. (in Korean)
  24. Leckner, B., 1978, The Spectral Distribution of Solar Radiation at the Earth's Surface Elements of a Model. Solar Energy, 20, 143-150. https://doi.org/10.1016/0038-092X(78)90187-1
  25. Lu, N., Qin, J., Yang, K., and Sun, J., 2011, A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy, 36(5), 3179-3188. https://doi.org/10.1016/j.energy.2011.03.007
  26. Paltridge, G.W. and Platt, C.M.R., 1976, Radiative Processes in Meteorology and Climatology. American Elsevier, NY, USA, 318.
  27. Pinker, R.T., Laszlo, I., Goodrich, D., and Pandithurai, G., 2000, Satellite estimates of surface radiative fluxes for the extended San Pedro Basin: sensitivity to aerosols. Agricultural and forest meteorology, 105(1), 43-54. https://doi.org/10.1016/S0168-1923(00)00190-8
  28. Platnick, S., King, M.D., Ackerman, S.A., Menzel, W.P., Baum, B.A., Riedi, J.C., and Frey, R.A., 2003, The MODIS cloud products: Algorithms and examples from Terra. IEEE Transactions on Geoscience and Remote Sensing,41(2), 459-473. https://doi.org/10.1109/TGRS.2002.808301
  29. Siegel R. and Hewell, J.R. 1981, Thermal Radiation Heat Transfer. Hemisphere Pub. Corp., Washington, 524.
  30. Sutter, M., Dürr, B., and Philipona, R., 2004, Comparison of two radiation algorithms for surface-based cloud-free sky detection. Journal of Geophysical Research, 109, D17202. https://doi.org/10.1029/2004JD004582
  31. Tang, W., Qin, J., Yang, K., Liu, S., Lu, N., and Niu, X., 2016, Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data. Atmospheric Chemistry and Physics, 16(4), 2543-2557. https://doi.org/10.5194/acp-16-2543-2016
  32. WMO, 2008, Guide to Meteorological Instruments and Methods of observation, WMO-No. 8 (CIMO Guide), 14-29.
  33. Yang, D., Jirutitijaroen, P., and Walsh, W.M., 2012, Hourly solar irradiance time series forecasting using cloud cover index. Solar Energy, 86(12), 3531-3543. https://doi.org/10.1016/j.solener.2012.07.029
  34. Zo, I.S., Jee, J.B., Lee, W.H., Lee, K.T., and Choi, Y.J., 2010, Distribution of Surface Solar Radiation by Radiative Model in South Korea. Climate Change Research, 01, 147-161. (in Korean)
  35. Zo, I.S., Jee, J.B., and Lee, K.T., 2014, Development of GWNU (Gangneung-Wonju National University) Onelayer Transfer Model for Calculation of Solar Radiation Distribution of the Korea Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 575-584. https://doi.org/10.1007/s13143-014-0047-0
  36. Zhao, W., Qualls, R.J., and Berliner, P.R., 2003. Modeling of the short wave radiation distribution in an agroforestry system. Agricultural and forest meteorology, 118(3), 185-206. https://doi.org/10.1016/S0168-1923(03)00108-4

피인용 문헌

  1. Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area vol.39, pp.3, 2018, https://doi.org/10.5467/JKESS.2018.39.3.228