DOI QR코드

DOI QR Code

Mesoscale Simulation of Polymeric Membranes for Energy and Environmental Application

에너지-환경 분야용 분리막의 Mesoscale Simulation 동향 연구

  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 박치훈 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2017.04.25
  • Accepted : 2017.04.28
  • Published : 2017.04.30

Abstract

Mesoscale simulation is a type of molecular simulation techniques where groups of atoms are defined as a single bead for calculations, and accordingly, is possible to simulate longer time ($ns{\sim}{\mu}s$) and bigger size ($nm{\sim}{\mu}m$). There are two types of mesoscale simulations : (1) particle-based mesoscale which simulates the system by calculating the movement of the particles themselves and (2) field theory which simulates the system by calculating changes in the chemical potential filed or density field. Mesoscale simulations are powerful tools to study the macroscopic properties of polymers for various applications of energy and environment. In this review, we report the trends and useful information in mesoscale simulation and provide an opportunity for membrane researchers working in the energy-environment field to understand mesoscale simulation techniques.

Mesoscale simulation은 원자의 그룹을 묶어서 하나의 단위로서 계산을 수행하는 전산모사 기술로 $ns{\sim}{\mu}s$의 시간 및 $nm{\sim}{\mu}m$의 크기까지 모사가 가능하다. 이러한, mesoscale simulation에는 (1) 입자 자체의 움직임을 계산하여 시스템을 모사하는 particle-based mesoscale, (2) 입자의 움직임이 아닌 chemical potential filed나 density field 등의 변화를 계산하여 시스템을 모사하는 field theory 등의 방법 등이 있는데, 두 방법 모두 고분자의 거시적 특성을 살펴보기 위한 강력한 전산모사 기술로서, 에너지-환경 분야용 고분자 분리막의 다양한 응용분야에서 활용되고 있다. 기존에는 주로 블록 공중합체 분야에서 연구결과들이 보고되었으나, 최근 들어 실제 고분자 분리막의 제조 조건 등을 모사한 연구 결과와 같이 좀 더 응용 분야에 가까운 다양한 에너지-환경용 고분자 분리막 관련 연구가 진행되고 있다. 이온 교환막의 경우에는 이온 전달 채널 형성을 분석 및 예측하기 위한 다양한 mesoscale simulation 결과들이 발표되고 있고, 최근에는 CNT, graphene 등의 나노 첨가물 소재에 대한 연구도 활발히 진행되고 있다. 본 총설에서는 mesoscale simulation 관련 연구에 대한 동향을 정리하고, 어떤 분야에서 유용하게 활용 가능한지 제시하며, 에너지-환경 분야에 종사하는 분리막 연구자들이 mesoscale simulation 기술에 좀 더 쉽게 다가갈 수 있는 기회를 제공하고자 한다.

Keywords

References

  1. T. H. Lee, H. D. Lee, and H. B. Park, "Current research trends in polyamide based nanocomposite membranes for desalination", Membr. J., 26, 351 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.351
  2. J. I. Ha and T. B. Kang, "Separation of $H_2$ and $N_2$ gases by PDMS-chitosan composite membranes", Membr. J., 23, 418 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.418
  3. H. W. Kim and H. B. Park, "Gas transport behavior of polydopamine-coated composite membranes", Membr. J., 23, 136 (2013).
  4. D. J. Kim and S. Y. Nam, "Development and application trend of bipolar membrane for electrodialysis", Membr. J., 23, 319 (2013).
  5. C. H. Park, H. S. Kim, and Y. M. Lee, "Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica", Membr. J., 24, 301 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.301
  6. J. C. Jansen, M. MacChione, E. Tocci, L. De Lorenzo, Y. P. Yampolskii, O. Sanfirova, V. P. Shantarovich, D. Hofmann, and E. Drioli, "Comparative study of different probing techniques for the analysis of the free volume distribution in amorphous glassy perfluoropolymers", Macromolecules, 42, 7589 (2009). https://doi.org/10.1021/ma901244d
  7. C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.341
  8. J. Huh and W. H. Jo, "Simulation of self-assembled structures in macromolecular systems: From atomistic model to mesoscopic model", Polymer(Korea), 30, 453 (2006).
  9. P. Espanol and P. Warren, "Hydrodynamics from dissipative particle dynamics", Phys. Rev. E, 52, 1734 (1995). https://doi.org/10.1103/PhysRevE.52.1734
  10. J. T. Wescott, Y. Qi, L. Subramanian, and T. W. Capehart, "Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes", J. Chem. Phys., 124, 134702 (2006). https://doi.org/10.1063/1.2177649
  11. A. Knoll, K. S. Lyakhova, A. Horvat, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, "Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid", Nat. Mater., 3, 886 (2004). https://doi.org/10.1038/nmat1258
  12. X.-L. Wang, H.-J. Qian, L.-J. Chen, Z.-Y. Lu, and Z.-S. Li, "Dissipative particle dynamics simulation on the polymer membrane formation by immersion precipitation", J. Membr. Sci., 311, 251 (2008). https://doi.org/10.1016/j.memsci.2007.12.024
  13. Y.-D. He, Y.-H. Tang, and X.-L. Wang, "Dissipative particle dynamics simulation on the membrane formation of polymer-diluent system via thermally induced phase separation", J. Membr. Sci., 368, 78 (2011). https://doi.org/10.1016/j.memsci.2010.11.010
  14. Y.-h. Tang, Y.-d. He, and X.-l. Wang, "Three-dimensional analysis of membrane formation via thermally induced phase separation by dissipative particle dynamics simulation", J. Membr. Sci., 437, 40 (2013). https://doi.org/10.1016/j.memsci.2013.02.018
  15. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  16. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016). https://doi.org/10.1038/nature17634
  17. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
  18. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010). https://doi.org/10.1021/jp105708m
  19. S. S. Jang, V. Molinero, T. Cagin, and W. A. Goddard Iii, "Nanophase-segregation and transport in nafion 117 from molecular dynamics simulations: Effect of monomeric sequence", J. Phys. Chem. B, 108, 3149 (2004). https://doi.org/10.1021/jp036842c
  20. P. Y. Chen, C. P. Chiu, and C. W. Hong, "Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes", J. Power Sources, 194, 746 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.011
  21. J. T. Wescott, Y. Qi, L. Subramanian, and T. W. Capehart, "Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes", J. Chem. Phys., 124, 134702 (2006). https://doi.org/10.1063/1.2177649
  22. D. Wu, S. J. Paddison, and J. A. Elliott, "A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations", Energy. Environ. Sci., 1, 284 (2008). https://doi.org/10.1039/b809600g
  23. P. V. Komarov, I. N. Veselov, P. P. Chu, and P. G. Khalatur, "Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone) and Nafion", Soft Matter, 6, 3939 (2010). https://doi.org/10.1039/b921369d
  24. C. H. Park, H. K. Kim, C. H. Lee, H. B. Park, and Y. M. Lee, "$Nafion^{(R)}$ nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance", J. Power Sources, 194, 646 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.053
  25. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62 (2004). https://doi.org/10.1126/science.1092048
  26. H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013). https://doi.org/10.1126/science.1236098
  27. S. N. Schiffres, K. H. Kim, L. Hu, A. J. H. McGaughey, M. F. Islam, and J. A. Malen, "Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels", Adv. Funct. Mater., 22, 5251 (2012). https://doi.org/10.1002/adfm.201201285
  28. A. Maiti, J. Wescott, and P. Kung, "Nanotube-polymer composites: Insights from Flory-Huggins theory and mesoscale simulations", Mol. Simul., 31, 143 (2005). https://doi.org/10.1080/08927020412331308539
  29. C. H. Park, E. Tocci, E. Fontananova, M. A. Bahattab, S. A. Aljlil, and E. Drioli, "Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion", J. Membr. Sci., 514, 195 (2016). https://doi.org/10.1016/j.memsci.2016.04.011