DOI QR코드

DOI QR Code

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes

Poly(ethylene oxide)와 Poly(ethylene-co-vinyl acetate)의 혼합막에 대한 기체분리 특성

  • Lee, Hyun Kyung (Department of Chemical Engineering and Materials Science, Sangmyung Unicersity) ;
  • Kang, Min Ji (Department of Chemical Engineering and Materials Science, Sangmyung Unicersity)
  • 이현경 (상명대학교 화공신소재학과) ;
  • 강민지 (상명대학교 화공신소재학과)
  • Received : 2017.03.15
  • Accepted : 2017.04.17
  • Published : 2017.04.30

Abstract

In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.

본 연구에서는 poly(ethylene oxide) (PEO)와 poly(ethylene-co-vinyl acetate) (EVA) 혼합으로 구성된 막을 통한 단일기체($N_2$, $O_2$, $CO_2$)의 투과 성질을 조사하였다. FT-IR 분석 결과 제조된 막에서 새로운 흡수피크는 보이지 않았는데, 이것은 PEO와 EVA가 물리적으로 혼합되었음을 나타낸다. SEM 관찰에서는 PEO/EVA 혼합 매트릭스에서 EVA 함량이 증가함에 따라 PEO의 결정상이 감소함을 보여 주었다. DSC 분석결과 PEO/EVA 혼합막의 결정화도는 EVA 함량이 증가함에 따라 감소하였다. 기체투과 실험은 4~8 bar의 공급압력에서 이루어졌다. PEO/EVA 혼합막에서 $CO_2$의 투과도는 공급 압력 증가에 따라 증가하였다. 그러나 $N_2$$O_2$의 투과도는 공급 압력에 무관하였다. 반면에, PEO/ EVA 혼합막의 모든 기체의 투과도는 반결정성 PEO에서 무정형 EVA의 함량이 증가함에 따라 증가하였다. 특히, 40 wt% EVA 혼합막은 64 Barrer의 $CO_2$ 투과도와 61.5의 $CO_2/N_2$ 이상선택도를 보였다. 높은 $CO_2$ 투과도와 $CO_2/N_2$ 이상선택도는 PEO의 극성 에테르기 또는 EVA의 극성 에스터기와 극성 $CO_2$ 간의 강한 친화성에 기인한다.

Keywords

References

  1. C. E. Powell and G. G. Qiao, "Polymeric $CO_2/N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062
  2. B. K. Seo, J. H. Kim, H. S. Ahn, B. J. Chang, and K. H. Lee, "The state of the art of membranes technology for separation of carbon dioxide from flue gases", KIC news, 14, 1 (2011).
  3. H. Lin and B. D. Freeman, "Gas solubility, diffusivity and permeability in poly(ethylene oxide)", J. Membr. Sci., 239, 105 (2004). https://doi.org/10.1016/j.memsci.2003.08.031
  4. M. Yoshino, K. Ito, H. Kita, and K. Okamoto, "Effects of hard-segment polymers on $CO_2/N_2$ gas separation properties of poly(ethylene oxide)-segmented copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 1707 (2000). https://doi.org/10.1002/1099-0488(20000701)38:13<1707::AID-POLB40>3.0.CO;2-W
  5. V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  6. J. H. Kim, S. Y. Ha, and Y. M. Lee "Gas permeation of poly(amide-6-b-ethylene oxide) copolymers", J. Membr. Sci., 190, 179 (2001). https://doi.org/10.1016/S0376-7388(01)00444-6
  7. Y. Hirayama, Y. Kase, N. Tanihara, Y. Sumiyama, Y. Kusuki, and K. Haraya, "Permeation properties to $CO_2$ and $N_2$ of poly(ethylene oxide)-containing and crosslinked polymer films", J. Membr. Sci., 160, 87 (1999). https://doi.org/10.1016/S0376-7388(99)00080-0
  8. S. K. Kim and S. R. Hong "Gas permeation Characteristics of propanol/propan in Pebax-ZIF composite membranes", Membr. J., 24, 259 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.259
  9. J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
  10. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  11. K. Okamoto, N. Umeo, S. Okamyo, K. Tanaka, and H. Kita, "Selective permeation of carbon dioxide over nitrogen through polyethylene-containing polyimide membranes", Chem. Lett., 22, 225 (1993). https://doi.org/10.1246/cl.1993.225
  12. K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, "Gas permeation properties of poly(ether imide) segmented copolymers", Macromolecules, 28, 6950 (1995). https://doi.org/10.1021/ma00124a035
  13. A. Car, C. Stropnik, W. Yave, and K. V. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for $CO_2$ separation ", J. Membr. Sci., 307, 88 (2008). https://doi.org/10.1016/j.memsci.2007.09.023
  14. K. B. Kim, E. H. Cho, S. I. Cheong, H. K. Lee, and J. W. Rhim, "Gas separation study of PEBAX 3533 and PEG blended membranes", Membr. J., 23, 144 (2013).
  15. S. Feng, J. Ren, K. Hua, H. Li, X. Ren, and M. Deng, "Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation", Sep. Purif. Technol., 116, 25 (2013). https://doi.org/10.1016/j.seppur.2013.05.002
  16. A. Wolinska-Grabczyk, P. Kubica, and A. Jankowski, "Effect of the acetate group content on gas permeation through membranes based on poly(ethylene-co-vinyl acetate) and its blends", J. Membr. Sci., 443, 227 (2013). https://doi.org/10.1016/j.memsci.2013.04.057
  17. S. Marais, E. Bureau, F. Gouanve, E. Ben Salem, Y. Hirata, A. Andrio, C. Cabot, and H. Atmani, "Transport of water and gases through EVA/PVC blend films-permeation and DSC investigations", Polymer Testing, 23, 475 (2004). https://doi.org/10.1016/j.polymertesting.2003.09.009
  18. S. Cimmino, E. Martuscelli, M. Saviano, and C. Silvestre, "Miscibility of poly(ethylene oxide)/ poly(ethylene-co-vinyl acetate) blends: Simulation of phase diagram", Polymer, 32, 1461 (1991). https://doi.org/10.1016/0032-3861(91)90427-K
  19. S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, and Z. Jiang, "Pebax-PEG-MWCNT hybrid membranes with enhanced $CO_2$ capture properties", J. Membr. Sci., 460, 62 (2014). https://doi.org/10.1016/j.memsci.2014.02.036