DOI QR코드

DOI QR Code

Field Measurements and Review of the Curve Squeal Noise of Urban Railways

도시철도 차량 주행시 곡선스킬소음 실험 및 고찰

  • Kim, Jae-chul (Green Transport and Logistics Institute, Korea Railroad Research Institute) ;
  • Kim, Kwanju (Dept. of Mechanical and System Design Engineering, Hongik University) ;
  • Lee, Junheon (Hongik University Research Institute of Science and Technology, Hongik University) ;
  • Kim, Jiyong (Hongik University Research Institute of Science and Technology, Hongik University)
  • Received : 2017.01.02
  • Accepted : 2017.03.09
  • Published : 2017.04.30

Abstract

High frequency squeal noise can be generated when a railroad vehicle runs a sharp curved section; this noise causes environmental complaints and excessive wear on the wheel and the railroad track. In this paper, curved squeal noise experiments on a commercial railway were carried out to investigate this phenomenon. The relationship of the squeal noise pressure level, the frequency characteristics, the railway running speed, and the modal behavior of the wheel were investigated. At the same time, the lateral motion of the wheel relative to the rail was captured using a video camera; wheel movement was calculated when the noise was generated. queal noise occurred at the highest level at the inner front wheel; this phenomena is considered to be related to the lateral vibration response characteristics of the wheel. It can be seen that the magnitude of this squeal noise is not directly related to the increase in vehicle speed.

도심을 지나는 철도 궤도는 급격한 곡선 구간이 존재하며, 철도차량이 곡선부를 주행하며 발생시키는 높은 주파수의 스킬소음은 곡선부 인근에 소음 민원을 야기하고, 해당 구간 궤도의 마모를 과도하게 발생시킨다. 본 논문에서는 대표적 비선형, 과도 특성인 스킬소음의 현상을 정확하게 파악하기 위해서 실차를 대상으로 곡선부 스킬 소음실험을 수행하였다. 특정 대차내 4 차륜을 대상으로 스킬소음의 음압의 크기, 주파수 특성, 주행 속도 변화에 따른 영향, 차륜의 진동응답특성과 스킬소음의 연관관계를 파악하였다. 동시에 차륜과 레일의 접촉 위치의 변화를 촬영한 영상을 분석하여 스킬소음 발생시 차륜의 레일에 대한 상대적 움직임에 대한 현상을 살펴보았다. 철도 차량 곡선 주행시 스킬소음은 내측 전륜에서 가장 크게 발생하며, 이는 차륜의 횡방향 진동 응답 특성과 관련이 있다고 생각된다. 이 발생 스킬소음의 크기는 차량 속도 증가와는 직접적인 관련이 없음을 알 수 있었다.

Keywords

References

  1. S. Hsu, Z. Huang, S. Iwnicki (2007) Experimental and theoretical investigation of railway wheel squeal, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(1), pp. 59-73. https://doi.org/10.1243/0954409JRRT85
  2. S. Papini, L. Pugi, A. Rindi, E. Meli (2013) An integrated approach for the optimization of wheel-rail contact force measurement systems, Journal of Modern Transport, 21(2), pp. 95-102. https://doi.org/10.1007/s40534-013-0013-z
  3. M. Janssens, H. Van Vliet, P. Koojiman, F. de Beer (2000) Curve squeal of rail bound vehicles, Part 3: measurement techniques for wheel/rail contact velocities and forces at squeal noise frequencies, Proceedings of the Internoise 2000, Nice, France, pp. 27-30.
  4. N. Vincent, J. Koch (2006) Curve squeal of urban rolling stock-part 1: state of the art and field measurements, Journal of Sound and Vibration, 293, pp. 691-700. https://doi.org/10.1016/j.jsv.2005.12.008
  5. Y. Choi, J. Koo, W. You, H. Koh (2009) A Study on the noise characteristics of subway train, Journal of the Korean Society for Railway, 12(3), pp. 329-334.
  6. A. Matsumoto, Y. Sato, H. Ohno (2005) Improvement of bogie curving performance by using friction modifier to rail/wheel interface verification by full-scale rolling stand test, Wear, 258, pp. 1201-1208. https://doi.org/10.1016/j.wear.2004.03.063