Double primary lung adenocarcinoma diagnosed by epidermal growth factor receptor mutation status

Oh Jung Kwon1, Min Hyeok Lee1, Sung Ju Kang1, Seul Gi Kim1, In Beom Jeong1, Ji Yun Jeong2, Eun Jung Cha3, Do Yeun Cho1, Young Jin Kim4, Ji Woong Son1

1Department of Internal Medicine, Konyang University Hospital, Daejeon; 2Department of Pathology, Kyungpook National University Medical Center, Kyungpook National University School of Medicine, Daegu; Departments of 3Pathology and 4Thoracic Surgery, Konyang University Hospital, Daejeon, Korea

A nodular density was detected on a chest radiograph taken from a 57-year-old Korean woman who was visiting a hospital for a routine check. Chest computed tomography revealed a 4.8 cm lobulated mass in the right lung and another focal nodular lesion in the left lung; biopsies of both lungs revealed adenocarcinoma. We conducted DNA sequencing and peptide nucleic acid clamping to investigate the potential double primary lung cancer. The results verified that the mass in the right lung had a mutation in the epidermal growth factor receptor, whereas the nodule in the left lung had a wild-type sequence, showing that these two were genetically different cancers from one another. Thus, we demonstrate that genetic testing is useful in determining double primary lung cancer, and we herein report on this case.

Keywords: Adenocarcinoma; Differential diagnosis; Lung cancer; DNA sequence analysis; Mutations

INTRODUCTION

The number of patients with multiple primary lung cancer (MPLC) is increasing [1]. The concept of MPLC was introduced in 1924 [2], and second primary tumors are either metachronous—being detected after the primary lesion, or synchronous—being resected or detected simultaneously. Synchronous MPLC was presumed to be uncommon; however, in reality its true incidence, which ranges from 0.2% to 20% [3], is increasing owing to the wide usage of positron emission tomography (PET) scanning and improvements in computed tomography (CT) scanning and other diagnostic modalities.

When multiple synchronous lung tumors have been identified, the differentiation of multi-centric cancers from single cancers with pulmonary metastases or intrapulmonary metastases from primary cancers in different organs can often be difficult, especially if the histologic characteristics of synchronous tumors are the same.

We present a case of synchronous double primary lung cancers; an adenocarcinoma with an epidermal growth factor receptor (EGFR) mutation in the right lung and an adenocarcinoma without mutation in the left lung.

CASE

A 57-year-old Korean woman visited a hospital for a routine check-up. A nodular density was detected on a chest radiography. She was healthy with no symptoms and had an unremarkable family or medical history. In addition, she had no history of smoking. Her vital signs revealed a blood pressure of 110/71 mmHg, a heart rate of 81 beats per mi-

Received: July 11, 2016, Revised: September 13, 2016 Accepted: September 26, 2016

Corresponding Author: Ji Woong Son, Departmet of Internal Medicine, Konyang University Hospital, Gwanjeo-dong 158, Seo-gu, Daejeon 35365, Korea Tel: +82-42-600-8817, Fax: +82-42-600-9090 E-mail: sk1609@hanmail.net

Copyright © 2017 Yeungnam University College of Medicine
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Diagnosis of double primary lung cancer

YUJM VOLUME 34, NUMBER 2, DECEMBER 2017

nute, and a respiration rate of 17 breaths per minute; her laboratory findings were all normal. Her general condition was good, and a physical examination showed no abnormalities. Chest X-ray showed an abnormal shadow in the right middle lung field. A chest CT scan revealed a 4.8 cm lobulated mass in the right upper lobe (RS3) and another focal nodular lesion in the left upper lobe (LS3) (Fig. 1). We observed no mediastinal lymph node enlargement and noted no metastatic lesions on brain magnetic resonance imaging scan, PET-CT scan, or whole-body bone scan. The levels of serum tumor markers, such as carcinoembryonic antigen, cytokeratin fragment, and neuron-specific enolase, were within normal range.

We performed two percutaneous needle aspiration biopsies (NABs) for each of the nodules and collected biopsy specimens from both lesions. There were no complications during NAB, and the patient had an uneventful recovery. Histological examinations of both specimens revealed adenocarcinomas in both lungs (Fig. 2).

To determine whether the lesions arose independently or as a result of metastasis, we conducted direct sequencing of the deoxyribonucleic acid (DNA) from both tumors. Exon sequencing of the genomic DNA revealed deletion and substitution mutations of EGFR in the right lung nodule and a wild-type sequence in the left lung nodule (Fig. 3). Given the

Fig. 1. Computed tomography scan showing a 4.8 cm lobulated mass with air bronchogram in the right posterior segment (A). Another focal nodular lesion is evident in the left anterior segment with a lucent internal bubble (B).

Fig. 2. The left lung adenocarcinoma shows an acinar and lepidic pattern (A), while adenocarcinoma in the right lung consists of tumor cell nests with poorly-formed and small glandular spaces (B). (A, B, H&E stain, ×200).
Fig. 3. Direct sequencing DNA demonstrating an exon 19 deletion (A) and an exon 20 substitution (B) in the tumor in the right lung.

Fig. 4. PNA-mediated real-time PCR clamping. A PNA/DNA hybrid with a single base pair mismatch did not suppress annealing of the PCR primer or amplification of mutant alleles (exon 19 deletion). PNA, peptide nucleic acid; PCR, polymerase chain reaction; RFU, relative fluorescence unit.

We performed a right upper lobectomy in March 2014 and a left upper lobe anterior and superior lingular segmentectomy in April 2014. There were no intraoperative complications, and the patient fully recovered. Pathologic staging of the nodule in the right lung was pT2aN2 (stage IIIA), whereas that in the left lung was pT2aN0 (stage IB). Both nodules were positive for thyroid transcription factor-1. Adjuvant concurrent chemoradiation therapy was administered after the surgery.

During the follow-up period, there was recurrence only in the right-side (lower right lung, RS6). After the treatment with an EGFR tyrosine kinase inhibitor, a partial response state was maintained.

DISCUSSION

Lung cancer can be divided into four main types: squamous cell carcinoma, small cell carcinoma, large cell carcinoma, and adenocarcinoma. Especially in adenocarcinoma, a more precise subtyping is made available due to the molecular analytic techniques. According to the presence or absence of a driving mutation, the clinical characteristics and optimal treatments are different. Therefore, genetic analysis of the driving mutation is an essential tool in lung cancer diagnosis and treatment.

The diagnosis of a second primary lung cancer is complex for a number of reasons. It can be difficult to differentiate a metastasis from the primary lesion, if the latter occurs within 2 years of the initial tumor. Differentiation is also hindered when the initial tumor and second primary lesion have a similar histological subtype and when the second lesion is located in an area previously exposed to radiotherapy. This is the
Diagnosis of double primary lung cancer

YUJM VOLUME 34, NUMBER 2, DECEMBER 2017

273

case because changes in tissue morphology can complicate
the differential diagnosis.

Direct sequencing and PNA clamping are approved by the
Korean Food and Drug Administration. A PNA is an artifi-
cially synthesized polymer that can bind to a complementary
sequence in DNA; the binding capacity of PNA is stronger
than that of DNA. PNA clamping can detect 29 target muta-
tions of clinical significance among approximately 250 known
EGFR mutations [4], but it cannot detect unknown EGFR mu-
tation sites. The weakness of PNA clamping is that this meth-

The diagnosis is complicated by difficulties in clearly mak-
ing a distinction between MPLC and metastatic lung cancer.
Clinicopathologic diagnosis, assessment, and management
have all evolved, but still remain severely limited by a lack
of dependable and robust molecular markers for the differ-
ential diagnosis of MPLC and metastasis. The Martini and
Melamed clinicopathological assessment criteria are based on
tumor characteristics that include, but are not limited to, the
location, morphology, absence or presence of carcinoma in
situ, metastasis, and vascular invasion [5]. However, these cri-
teria lack the power to differentiate between a second primary
lung cancer and metastasis [6,7]. Genomic analysis of patients
is useful to distinguish between a second primary lung cancer and
metastasis. Girard et al. found that genomic profiling
contradicted the clinicopathological diagnosis in 18% of tu-
rors [8]. That same group reported that EGFR and K-ras mu-
tation status could be used to determine the existence of clo-
nal relationships between MPLCs. EGFR/K-ras mutational
profiling was useful in improving the discrimination between
intrapulmonary metastases and MPLC. In a search of the lit-

REFERENCES

gnosis of multiple primary lung cancer: a systematic review.
2. Beyreuther H. Multiplicität von Carcinomen bei einem Fall
von sog. “Schneeberger” Lungenkrebs mit Tuberkulose. Virchows
Arch Path Anat 1924;250:230-43.
F. Surgical results for multiple primary lung cancers. Eur J
parison of direct sequencing, PNA clamping-real time poly-
merase chain reaction, and pyrosequencing methods for the
detection of EGFR mutations in non-small cell lung carcino-
ma and the correlation with clinical responses to EGFR tyro-
sine kinase inhibitor treatment. Korean J Pathol 2013;47:
52-60.
5. Martini N, Melamed MR. Multiple primary lung cancers. J
Thorac Cardiovasc Surg 1975;70:606-12.
6. Chang YL, Wu CT, Lee YC. Surgical treatment of synchro-
nous multiple primary lung cancers: experience of 92 pati-
7. Ostrovnaya I, Okshen AB, Seshan VE, Orlov I, Albertson DG,
Begg CB. A metastasis or a second independent cancer? Evalu-
ating the clonal origin of tumors using array copy number
D, et al. Genomic and mutational profiling to assess clonal
relationships between multiple non-small cell lung cancers.
and discordant EGFR mutations in patients with multifocal
adenocarcinomas: implications for EGFR-targeted therapy.
Clin Ther 2016;38:1567-76.

CONFICT OF INTEREST

No potential conflict of interest relevant to this article was
reported.