DOI QR코드

DOI QR Code

제올라이트 NaX에 의한 방사성 물질인 Cs 이온의 흡착 특성

Adsorption Characteristics of Radioactive Cs Ion by Zeolite X

  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2016.08.01
  • 심사 : 2017.02.15
  • 발행 : 2017.02.28

초록

본 연구에서는 제올라이트 X를 이용한 Cs 이온 흡착시 흡착시간 및 초기농도, 온도 및 pH 변화와 같은 영향인자를 평가하였다. 이 결과로부터 Cs 이온의 흡착속도, 등온흡착량 및 열역학적 특성을 해석하였다. 제올라이트 X에 의한 Cs 이온의 흡착은 pH 5~10에서 효과적이었으며, 평형흡착시간은 약 60분이었다. 흡착속도와 등온흡착량은 유사 2차 속도 모델식과 Langmuir 식에 잘 적용되었다. Langmuir 식으로 구한 Cs 이온의 최대 흡착량은 293~333 K에서 각각 303.03~333.33 mg/g이었다. 제올라이트 X에 의한 Cs 이온의 흡착은 흡열반응이고 자발적인 반응이었다. 실험값을 다중회귀분석으로 최적화하여 2차 다항식을 얻었다. 이 최적화된 식으로부터 구한 종속변수의 값과 실험에서 구한 값은 잘 일치하였다.

This study was to evaluate the influential parameters such as intial Cs concentration, reaction temperature, contact time and pH variation of solution on Cs adsorption. Using the experimental data, adsorption kinetics, isotherms and thermodynamic properties were analyzed. The Cs ion adsorption of the zeolite X was effective in the range from pH 5 to 10 and reached equilibrium after 60 minutes. The adsorption kinetics and isotherms of Cs ion with the zeolite X was described well by the pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacities of Cs ion calculated from Langmuir isotherm model at 293~333 K were from 303.03 mg/g to 333.33 mg/g. It was found that thermodynamic property of Cs ion absorption on the zeolite X was spontaneous and endothermic reaction. The experimental data were fitted a second-order polynomial equation by the multiple regression analysis. The values of the dependent variable calculated by this best fitted model equation were in very good agreement with the experimentally obtained values.

키워드

참고문헌

  1. Yu, W., He, J., Lin, W., Li, Y., Men, W., Wang, F. and Huang, J., "Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the northwest Pacific," J. Environ. Radio., 142, 54-61(2015). https://doi.org/10.1016/j.jenvrad.2015.01.005
  2. Sahai, N., Carroll, S. A., Roberts, S. and O'Day, P. A., "X-ray absorption spectroscopy of strontium (II) coordination: II. Sorption and precipitation at kaolinite, amorphous silica, and goethite surfaces," J. Colloid. Interf. Sci., 222(2), 198-212 (2000). https://doi.org/10.1006/jcis.1999.6562
  3. Kocherginsky, N. M., Zhang, Y. K. and Stucki, J. W., "D2- EHPA based strontium removal from strongly alkaline nuclear waste," Desalination, 144(1-3), 267-272(2002). https://doi.org/10.1016/S0011-9164(02)00326-0
  4. Shawabkeh, R. A., Rockstraw, D. A. and Bhada, R. K., "Copper and strontium adsorption by a novel carbon material manufactured from pecan shells," Carbon, 40(5), 781-786 (2002). https://doi.org/10.1016/S0008-6223(01)00198-1
  5. Karamanis, D. and Assimakopoulos, P. A., "Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions," Water Res., 41(9), 1897-1906(2007). https://doi.org/10.1016/j.watres.2007.01.053
  6. Lin, Y., Fryxell, G. E., Wu, H. and Engelhard, M., "Selective sorption of cesium using self-assembled monolayers on mesoporous supports," Environ. Sci. Technol., 35(19), 3962- 3966(2001). https://doi.org/10.1021/es010710k
  7. Lee, C. H., Park, J. M. and Lee, M. G., "Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash," J. Environ. Sci. Int., 23(12), 1987-1998 (2014). https://doi.org/10.5322/JESI.2014.23.12.1987
  8. Chegrouche, S., Mellah, A. and Barkat, M., "Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies," Desalination, 235(1-3), 306-318(2009). https://doi.org/10.1016/j.desal.2008.01.018
  9. Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z. and Yang, Y., "Adsorption of cesium from aqueous solution using agricultural residue-Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies," Water Res., 47(7), 2563-2571(2013). https://doi.org/10.1016/j.watres.2013.02.014
  10. Soco, E. and Kalembkiewicz, J., "Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash," J. Environ. Chem. Eng., 1(3), 581-588(2013). https://doi.org/10.1016/j.jece.2013.06.029
  11. Leppert, D., "Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water," Mining Eng., 42(6), 604-608(1990).
  12. Lee, C. H., Park, J. M. and Lee, M. G., "Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A : Adsorption isotherm and kinetics," J. Environ. Sci. Int., 24(2), 151-162(2015). https://doi.org/10.5322/JESI.2015.24.2.151
  13. Inan, S., Tel, H. and Altas, Y., "Sorption studies of strontium on hydrous zirconium dioxide," J. Radio. Nucl. Chem., 267(3), 615-621(2006). https://doi.org/10.1007/s10967-006-0094-9
  14. Izidoro, J. C., Fungaro, D. A., Abbott, J. E. and Wang, S., "Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems," Fuel, 103, 827-834(2013). https://doi.org/10.1016/j.fuel.2012.07.060
  15. Kyziol-Komosinska, J., Rosik-Dulewska, C., Franus, M., Antoszczyszyn-Szpicka, P., Czupiol, J. and Krzyzewska, I., "Sorption capacities of natural and synthetic zeolites for Cu (II) ions," Pol. J. Environ. Stud., 24(3), 1111-1123(2015). https://doi.org/10.15244/pjoes/30923
  16. Smiciklas, I., Dimovic, S. and Plecas, I., "Removal of $Cs^{1+}$, $Sr^{2+}$ and $Co^{2+}$ from aqueous solutions by adsorption on natural clinoptilolite," Appl. Clay Sci., 35(1), 139-144(2007). https://doi.org/10.1016/j.clay.2006.08.004
  17. Ma, B., Oh, S., Shin, W. S. and Choi, S. J., "Removol of $Co^{2+}$, $Sr^{2+}$ and $Cs^+$ from aqueous solution by phosphatemodified montmorillonite (PMM)," Desalination, 276(1-3), 336-346(2011). https://doi.org/10.1016/j.desal.2011.03.072
  18. El-Kamash, A. M., "Evaluation of zeolite A for the sorptive removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous solutions using batch and fixed bed column operations," J. Hazard. Mater., 151(2-3), 432-445(2008). https://doi.org/10.1016/j.jhazmat.2007.06.009
  19. El-Nagger, M. R., El-Kamash, A. M., El-Dessouky, M. I. and Ghonaim, A. K., "Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesiumions," J. Hazard. Mater., 154(1-3), 963-972(2008). https://doi.org/10.1016/j.jhazmat.2007.10.115
  20. Sinha, P. K., Panicker, P. K. and Amalraj, R. V., "Treatment of radioactive liquid waste containing cesium by indigenously available synthetic zeolites: A comparative study," Waste Manage., 15(2), 149-157(1995). https://doi.org/10.1016/0956-053X(95)00014-Q
  21. Krestou, A., Xenidis, A. and Panias, D., "Mechanism of aqueous uranium (VI) uptake by natural zeolitic tuff," Miner. Eng., 16(12), 1363-370(2003). https://doi.org/10.1016/j.mineng.2003.08.012
  22. Nibou, D., Mekatel, H., Amokrane, S., Barkat M. and Trari M., "Adsorption of $Zn^{2+}$ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies," J. Hazard. Mater., 173(1-3), 637-646(2010). https://doi.org/10.1016/j.jhazmat.2009.08.132
  23. Dubinin, M. M., "The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces," Chem. Rev., 60(2), 235-241(1960). https://doi.org/10.1021/cr60204a006
  24. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H. and Zarghami, R., "Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution," Chem. Eng. J., 172(1), 572-580(2011). https://doi.org/10.1016/j.cej.2011.06.011
  25. Chmielewcka-Horcathoca, E., "The interaction mechanisms between aqueous solutions of Cs and Ba radionuclides and local natural zeolites for an deactivation scenario," J. Radioanal. Nucl. Chem., 221(1), 151-155(1998).
  26. El-Rahman, K. A., El-Kamash, A. M., El-Sourougy, M. R. and Abdel-Moniem, N. M., "Thermodynamic modeling for the removal of $Cs^+$, $Sr^{2+}$, $Ca^{2+}$ and $Mg^{2+}$ ions from aqueous waste solutions using zeolite A," J. Radioanal. Nucl. Chem., 268(2), 221-230(2009). https://doi.org/10.1007/s10967-006-0157-y
  27. Abdel Rahman, R. O., Ibrahim, H. A., Hanafy, M. and Monem, N. M., "Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility," Chem. Eng. J., 157(1), 100-112(2010). https://doi.org/10.1016/j.cej.2009.10.057
  28. Xu, H., Sun, L. P., Shi, Y. Z., Wu, Y. H., Zhang, B. and Zhao, D. Q., "Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchellaesculenta As51620," Biochem. Eng. J., 39(1), 66-73 (2008). https://doi.org/10.1016/j.bej.2007.08.013
  29. Varsihini, J. S., Das, D. and Das, N., "Optimization of parameters for cerium(III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies," J. Rare Earths, 32(8), 745-758(2014). https://doi.org/10.1016/S1002-0721(14)60136-8
  30. Tripathi, P., Srivastava, V. C. and Kumar, A., "Optimization of an azo dye batch adsorption parameters using Box-Behnken design," Desalination, 249, 1273-1279(2009). https://doi.org/10.1016/j.desal.2009.03.010

피인용 문헌

  1. Characteristics of Influence of Domestic Radioactivity due to the Accident in a Nuclear Power Plant in a Neighboring Country - Focus on river and dam basin - vol.40, pp.3, 2018, https://doi.org/10.4491/KSEE.2018.40.3.139