DOI QR코드

DOI QR Code

알칼리성 폐기물과 해수를 이용한 이산화탄소 포집 및 해양저장

Capture and Ocean Storage of Carbon Dioxide Using Alkaline Wastes and Seawater

  • Lee, Junghyun (Korea Electric Power Corporation Research Institute) ;
  • Park, Misun (Korea Electric Power Corporation Research Institute) ;
  • Joo, Jisun (Korea Electric Power Corporation Research Institute) ;
  • Gil, Joon-Woo (Korea Electric Power Corporation Research Institute)
  • 투고 : 2016.08.02
  • 심사 : 2017.03.03
  • 발행 : 2017.03.31

초록

본 연구에서는 이산화탄소를 해수와 생석회를 포함하는 알칼리성 폐기물을 이용하여 중탄산 이온으로 변환한 후 해양에 방류함으로써 친환경적으로 해양에 격리하는 방법을 제안하고자 하였다. 기존의 폐석회석을 이용하여 이산화탄소를 중탄산 이온으로 중화시키는 방법(석회석 중화반응, accelerated weathering of limestone)에서 폐 석회석 대신 폐 생석회를 이용, 해수 중 다량으로 존재하는 마그네슘 이온을 산화마그네슘으로 침전시키는 공정을 추가하여 단위 해수 당 중탄산 이온의 농도가 배경 해수의 100배 이상이 되도록 하였다. 이렇게 중탄산 이온이 농축된 해수를 해양에 방류할 경우 자연 희석되거나 밀도류에 의하여 심층으로 이동하게 되어 장기간 해양에 격리된다. 중탄산 이온 해수의 방류에 따른 해양환경영향 연구 및 폐자원을 이용에 따른 불순물 제거 연구 등이 추가적으로 진행된다면, 본 기술은 이산화탄소 지중저장의 대안으로 활용될 수 있을 것으로 기대된다.

We investigate the availability of $CO_2$ ocean storage by means of chemical conversion of $CO_2$ to the dissolved inorganic carbon (mainly the bicarbonate ion) in seawater. The accelerated weathering of limestone (AWL) technique, which is accelerating the natural $CO_2$ uptake process through the chemical conversion using limestone and seawater, was proposed as an alternative method for reducing energy-related $CO_2$ emission. The method presented in this paper is slightly different from the AWL method. It involves reacting $CO_2$ with seawater and quicklime obtained from alkaline wastes to produce the bicarbonate-rich solution over 100 times more than seawater, which could be released and diluted into the ocean. The released dense bicarbonate-enriched water mass could subside into the deeper layer because of the density flow, and could be sequestrated stably in the ocean.

키워드

참고문헌

  1. COP 21 Paris France Sustainable Forum 2015 working with UNEP Home Page, http://www.cop21paris.org (2016).
  2. Schleussner, C.-F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., Knutti, R., Levermann, A., Fieler, K. and Hare, W., "Science and policy characteristics of the Paris Agreement temperature goal," Nature Clim. Change, advance online publication, DOI:10.1038/NCLIMATE3096(2016).
  3. Jung, Sokhee Philemon, "Practical implementation of microbial fuel cells for bioelectrochemical wastewater treatment," J. Korean Soc. Urban Environ., 13(2), 93-100(2013)
  4. Intergovernmental Panel on Climate Change, IPCC Carbon dioxide capture and storage. In: Metz, B., Davidson, O., de Coninck, H. C., Loos, M., Meyer, L. A. (Eds.), IPCC Special Report. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York (2005).
  5. Caldeira, K. and Rau, G. H., "Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications," Geophys. Res. Lett., 27, 225-228(2005).
  6. Rau, G. H., "$CO_2$ mitigation via capture and chemical conversion in seawater," Environ. Sci. Technol., 45, 1088-1092(2011). https://doi.org/10.1021/es102671x
  7. Rau, G. H. and Caldeira, K., "Enhanced carbonate dissolution: a means of sequestering waste $CO_2$ as ocean bicarbonate," Energy Convers. Manage., 40, 1803-1813(1999). https://doi.org/10.1016/S0196-8904(99)00071-0
  8. Rau, G. H., Knauss, K. G., Langer, W. H. and Caldeira, K., "Reducing energy-related $CO_2$ emissions using accelerated weathering of limestone," Energy, 32, 1471-1477(2007). https://doi.org/10.1016/j.energy.2006.10.011
  9. Kheshgi, H. S., "Sequestering atmospheric carbon dioxide by increasing ocean alkalinity," Energy, 20, 915-922(1995). https://doi.org/10.1016/0360-5442(95)00035-F
  10. London Protocol and Convention Home Page, http://londonprotocol.imo.org.
  11. Rau, G. H., McLeod, E. L. and Hoegh-Guldberg, O., "The need for new ocean conservation strategies in a high-carbon dioxide world," Nature Clim. Change, 2(10), 720-724(2012). https://doi.org/10.1038/nclimate1555
  12. Chou, W. C., Gong, G. C., Hsieh, P. S., Chang, M. H., Chen, H. Y., Yang, C. Y. and Syu, R. W., "Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: A case study for the Hoping power plant in northeastern Taiwan," Mar. Chem., 168, 27-36(2015). https://doi.org/10.1016/j.marchem.2014.10.008
  13. Talley, L. D., Tishchenko, P., Luchin, V., Nedashkovskiy, A., Sagalaev, S., Kang, D. J. and Min, D. H., "Atlas of Japan (East) Sea hydrographic properties in summer," Prog. in Oceano., 61(2), 277-348(2004). https://doi.org/10.1016/j.pocean.2004.06.011
  14. Haugan, P. M. and Drange, H., "Sequestration of $CO_2$ in the deep ocean by shallow injection," Nature, 357, 318-320(1992). https://doi.org/10.1038/357318a0
  15. Millero, Frank J., Chemical Oceanography, CRC Press (2013).