DOI QR코드

DOI QR Code

Estimation of Water Production Cost from Seawater Reverse Osmosis (SWRO) Plant in Korea

국내 해수담수화 플랜트 생산수 단가 추정

  • Hwang, Moon-Hyun (Glbal Desalination Research Center, Gwangju Institute of Science and Technology) ;
  • Han, Doseon (Glbal Desalination Research Center, Gwangju Institute of Science and Technology) ;
  • Kim, In S. (Glbal Desalination Research Center, Gwangju Institute of Science and Technology)
  • 황문현 (광주과학기술원 글로벌담수화연구센터) ;
  • 한도선 (광주과학기술원 글로벌담수화연구센터) ;
  • 김인수 (광주과학기술원 글로벌담수화연구센터)
  • Received : 2016.10.21
  • Accepted : 2017.03.02
  • Published : 2017.04.30

Abstract

This study was conducted to supply information that can be utilized as data for desalination plant construction in the future by estimating unit cost of water production in the potential site of Incheon, Daesan, Yeosu, Busan, Ulsan and Sokcho in Korea. The production costs in Sokcho and Ulsan were similar to those of Busan and Yeosu. Those four sites showed better economic range due to low construction cost for intake facility compared to Incheon and Daesan. Although the salinity measured in the above 6 sites did not show perceptible effect on the production cost, the difference of seasonal seawater temperature needs to be considered due to the change of flux in reverse osmosis (RO) membrane. It turned out that the most critical parameters are the amortization in a year by the analysis of life cycle and the capacity of plant. Incheon and Daesan showed the difference of production cost up to 29% at the condition of amortization in 25 year, and up to 22% depending on plant capacity. However, the production cost in this study did not take into account of other indirect costs, therefore, this should be considered as the minimum cost.

기후변화를 대비하여 국내 수자원 확보를 위한 해수담수화 플랜트의 필요성이 점차 높아지고 있어 향후 해수담수화 플랜트 건설시 경제적 판단의 근간이 될 수 있는 자료의 필요성도 또한 높아졌다. 이에 본 연구에서는 국내 해수담수화 플랜트 설치가 가능한 지역, 인천, 대산, 여수, 부산, 울산, 속초시를 대상으로 생산수 단가를 추정하여, 향후 플랜트 건설시 참고 자료로 활용이 가능하도록 제안하고자 하였다. 동해바다를 취수원으로 하는 속초와 울산시 생산수 단가는 부산과 여수시의 단가와 유사하였으나, 서해바다를 취수원으로 하는 인천과 대산에 비해 취수시설 건설비용 저감으로 인하여 비교적 경제적인 생산수 단가 범위를 나타내었다. 염도 조건은 비교적 유사하여 생산수 단가에 큰 영향을 미치지 못하는 것으로 사료되나, 계절별 수온 차에 의한 영향은 역삼투막의 생산수량 차이에 의해 높게 나타날 것으로 사료되었다. 가장 크게 생산수 단가에 영향을 미치는 요소는 생애주기 분석 시 적용되는 감가상각 연수와 플랜트 용량이었으며, 인천과 대산의 경우 감가상각 연수에 따라 최대 29%, 플랜트 용량에 따라 22%까지 차이가 발생하였다. 그러나 본 연구에서 추정된 생산수 단가는 간접비 등을 고려하지 않은 것으로 국내에서 생산할 수 있는 최소한의 단가로 고려되었으며, 실질적인 공사 시에는 제시된 생산수 단가보다 증가될 것으로 사료된다.

Keywords

References

  1. Jamaly, S., Darwish, N. N., Ahmed, I. and Hasan, S. W., "A short review on reverse osmosis pretreatment technologies," Desalination, 354, 30-38(2014). https://doi.org/10.1016/j.desal.2014.09.017
  2. Qureshi, B. A., Zubair, S. M., Sheikh, A. K., Bhujle, A. and Dubowsky, S., "Design and performance evaluation of reverse osmosis desalination systems: An emphasis on fouling modeling," Appl. Thermal Eng., 60, 208-217(2013). https://doi.org/10.1016/j.applthermaleng.2013.06.058
  3. Desalination Markets 2016, Global Water Intelligence(2015).
  4. Chang, J.-S., "Understanding the role of ecological indicator use in assessing the effects of desalination plants," Desalination, 365, 416-433(2015). https://doi.org/10.1016/j.desal.2015.03.013
  5. Desalination Markets 2010, Global Water Intelligence(2010).
  6. Karagiannis, I. C. and Soldatos, P. G., "Water Desalination Cost : Literature Review and Assessment," Desalination, 223, 448-456(2008). https://doi.org/10.1016/j.desal.2007.02.071
  7. Glueckstern, P., "History of Desalination Cost Estimations," (2004) http://132.68.226.240/english/pdf/IDS/71.pdf.
  8. Campos, C., "The Economics of Desalination for Various Uses," www.rac.es/ficheros/doc/00731.pdf.
  9. Yun, T. I., Gabelich, C. J., Cox, M. R., Mofidi, A., A. and Lesan, R., "Reducing Costs for Large-scale Desalting Plants Using Large-diameter, Reverse Osmosis Membranes" Desalination, 189, 141-154(2006). https://doi.org/10.1016/j.desal.2005.06.022
  10. Lisa Henthorne, P. E., Bartels, C., Bergman, R., Hallan, M., Kanppe, P., Losier, J., Metcalfe, P., Peery, M. and Shelby, I, "Large Diameter RO Technology," www.grahamtek.com.
  11. Jonhson, J. and Busch, M., "Engineering Aspects of Reverse Osmosis Module Desalting," www.lenntech.com.
  12. Shrivastava, A., Rosenberg, S. and Peery, M., "Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination," Desalination, 368, 181-192(2015). https://doi.org/10.1016/j.desal.2015.01.005
  13. Subramani, S. and Panda, R. C., "Statistical regression and modeliing analysis for reverse osmosis desalination process," Desalination, 351, 120-127(2014). https://doi.org/10.1016/j.desal.2014.07.038
  14. Du, Y., Xie, L., Liu, Y., Zhang, S. and Xu, Y., "Optimization of reverse osmosis networks with split partial second pass design," Desalination, 365, 365-380(2015). https://doi.org/10.1016/j.desal.2015.03.019
  15. Voutchkov, N., Desalination Engineering Planning and Design, Mc-Graw Hill, New York(2013).
  16. Raucher, R. S., Clements, J., Xu, P., Oxenford, J., Ruetten, J., Choto, Z. and Reiss, R., Guidelines for Implementing Seawater and Brackish Water Desalination Facilities, Water Research Foundation and Arsenic Water Technology Partnership(2010).
  17. Malaeb, L. and Ayoub, G. M., "Reverse osmosis technology for water treatment: State of the art review," Desalination, 267, 1-8(2011). https://doi.org/10.1016/j.desal.2010.09.001
  18. Jiang, A., Biegler, L. T., Wang, J., Cheng, W., Ding, Q. and Jiangzhou, S., "Optimal operations for large-scale seawater reverse osmosis networks," J. Membr. Sci., 476, 508-524 (2015). https://doi.org/10.1016/j.memsci.2014.12.005
  19. Alnouri, S. Y. and Linke, P., "Optimal seawater reverse osmosis network design considering product water boron specifications," Desalination, 345, 112-127(2014). https://doi.org/10.1016/j.desal.2014.04.030
  20. JianWang, J., Biegler, L. T., Cheng, W., Xing, C. and Jiang, Z., "Operational cost optimization of a full-scale SWRO system under multi-parameter variable conditions," Desalination, 355, 124-140(2015). https://doi.org/10.1016/j.desal.2014.10.016
  21. Choi, J.-S. and Kim, J.-T., "Modeling of full-scale reverse osmosis desalination system: Influence of operational parameters," J. Ind. Eng. Chem., 21, 261-268(2015). https://doi.org/10.1016/j.jiec.2014.02.033
  22. Status of O&M of Seawater Desalination Plant, Ministry of Environment Korea(2014).
  23. Seawater Desalination Project, K-water(2010).
  24. Mabrouk, A. A., Nafey, A. S. and Fath, H. E. S., "Thermoeconomic Analysis of Some Existing Desalination Processes," Desalination, 205, 354-373(2007). https://doi.org/10.1016/j.desal.2006.02.059
  25. Dore, M. H. I., "Forecasting the Economic Costs of Desalination Technology," Desalination, 172, 207-214(2005). https://doi.org/10.1016/j.desal.2004.07.036
  26. Voutchkov, N., "World Class Desalination Energy & the Environment," www.adelaide.edu.au(2011).
  27. Lin, S. and Elimelech, M., "Staged reverse osmosis operation: Configurations, energy efficiency, and application potential," Desalination, 366, 9-14(2015). https://doi.org/10.1016/j.desal.2015.02.043
  28. www.desaldata.com.
  29. Established Rule on the Calculation for Local Waterworks Charge, Ministry of Government Administration and Home Affairs(2013).
  30. Wilf, M., Awerbuch, L., Bartels, C., Mickley, M., Pearce, G. and Voutchkov, N., The Guidebook to Membrane Desalination Technology, Balaban Desalination Publications, Italy(2007).
  31. Report of Real-time Korea Oceanographic Observations, National Oceanographic Research Institute(2015).
  32. Goosen, M. F. A., Sablani, S. S., Al-Maskari, S. S., Al-Belushi, R. H. and Wilf, M., "Effect of Feed Temperature on Permeate Flux and Mass Transfer Coefficient in Spiral-Wound Reverse Osmosis Systems," Desalination, 144, 367-372(2002). https://doi.org/10.1016/S0011-9164(02)00345-4
  33. Wilf, M. and Bartels, C., "Optimization of Seawater RO systems design," Desalination, 173, 1-12(2005). https://doi.org/10.1016/j.desal.2004.06.206
  34. Anual Reports by Korea Ocean Monitoring Network 2015, Korea Hydrographic and Oceanographic Agency, www.khoa.go.kr.
  35. The Anual Report on Statics of Oceans and Fisheries 2015, Ministry of Oceans and Fisheries, www mof.go.kr.
  36. The Detail Research Planning Report for Center for Seawater Desalination Plant, Center for Seawater Desalination Plant in Gwangju Institute Science and Technology(2007).
  37. The Study on the Optimization Guide for the Construction and Operation of Seawater Desalination Plant, Ministry of Environment, K-Water(2002).
  38. Korea Price Index, www.kpi.or.kr.
  39. Hwang, M. H. and Kim, I. S., "Comparative Analysis of Seawater Desalination Technology in Korea and Overseas," J. Korean Soc. Environ. Eng., 38(5), 255-268(2016). https://doi.org/10.4491/KSEE.2016.38.5.255
  40. Avlonitis, A. A., Kouroumbas, K. and Vlachakis, N., "Energy Consumption and Membrane Replacement Cost for Seawater RO desalination Plants," Desalination, 157, 151-158(2003). https://doi.org/10.1016/S0011-9164(03)00395-3
  41. Poullikkas, A., "Optimization Algorithm for Reverse Osmosis Desalination Economics," Desalination, 133, 75-81(2001). https://doi.org/10.1016/S0011-9164(01)00084-4
  42. Lu, Y. Y., Hu, Y. D., Xu, D. M. and Wu. L. Y., "Optimum Design of Reverse Osmosis Seawater Desalination System Considering Membrane Cleaning and Replacing," J. Membr. Sci., 282, 7-13(2006). https://doi.org/10.1016/j.memsci.2006.04.019
  43. Glueckstern, P., "Historyof Desalination Cost Estimations," Proceeding of the International Conference on Desalination Costing, 1-17(2004).
  44. Prihasto, N, Liu, Q. F. and Kim, S. H., "Pre-treatment Strategies for Seawater Desalination by Reverse Osmosis System," Desalination, 249, 308-316(2009). https://doi.org/10.1016/j.desal.2008.09.010
  45. "Seawater Desalination Costs," White Paper, WATER REUSE Associtation, Desalination committee, http://waterreuse.org. (2012).
  46. Wang, Y. "Optimization of Integrated Seawater Desalination & Salt Production," Environmental Engineering Project, www.researchgate.net (2014).
  47. Voutchkov, N., "How Much Does Seawater Desalination Cost?," Texas Noonvative Water 2010, http://slideplayer.com (2010).
  48. The Amendment for the Assessment Rule on the Status of Operation and Management of Purification Plant, Ministry of Environment, Korea(2008).
  49. "Membrane Desalination Costs," American Membraen Technology Association, www.amtaorg.com(2007).
  50. Desalting Handbook for Planners, Desalination and Water Purification Research and Development Program Report No, 72(2003).
  51. The Method on Assessment and Analysis for Life Cycle Cost, Ministry of Land, Infrastructure and Transport, Korea (2008).

Cited by

  1. The Estimation of Total Cost Through the Financial Assessment of Customized High Purity Industrial Water vol.40, pp.11, 2018, https://doi.org/10.4491/KSEE.2018.40.11.428