DOI QR코드

DOI QR Code

Feasibility of Microwave for the Solubilization of Cattle Manure and the Effect of Chemical Catalysts Addition

우분의 가용화에 대한 마이크로웨이브의 적용성 및 화학적 촉매의 첨가에 따른 효과

  • Kim, Hyanggi (School of Civil and Environmental Engineering, Pusan National University) ;
  • Kang, Kyeong Hwan (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Lee, Jaeho (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Park, Taejoo (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Byun, Imgyu (Institute for Environmental Technology and Industry, Pusan National University)
  • 김향기 (부산대학교 사회환경시스템공학부) ;
  • 강경환 (부산대학교 환경기술.산업개발 연구소) ;
  • 이재호 (국립환경과학원 물환경공학연구과) ;
  • 박태주 (부산대학교 환경기술.산업개발 연구소) ;
  • 변임규 (부산대학교 환경기술.산업개발 연구소)
  • Received : 2016.11.21
  • Accepted : 2017.03.15
  • Published : 2017.04.30

Abstract

Microwave (MW) is an effective method for solubilizing organic solids because it has thermal, non-thermal and ionic conduction effects by dielectric heating and high energy efficiency. In this study, we evaluated the application of MW to the solubilization of cattle manure and investigated the solubilization ratio of cattle manure by solid concentration, MW power and target temperature. And $H_2SO_4$ and NaCl were added to investigated the effects on the MW-assisted solubilization. Also, we evaluated the solubilization efficiency by biochemical methane potential(BMP) test according to the solubilization conditions. Maximum SCOD increment per energy supply was 70.5 mg $SCOD_{increased}/kJ$ at 12% of the solid concentration, MW power of 800 W and the target temperature of $40^{\circ}C$. And SCOD concentration went up 153.2% compared to the initial concentration. In the MW-assisted solubilization with $H_2SO_4$ and NaCl as chemical catalysts, SCOD concentration was increased by 36% and 22.7%, respectively, compared to the result of MW. The methane production was increased by 13.3% and 11.3% with the addition of $H_2SO_4$ and NaCl. Therefore, MW is an effective method for solubilization of cattle manure, and it is necessary to use chemical catalysts to increase the solubilzation efficiency.

마이크로웨이브(MW)는 유전가열에 의한 열적, 비열적 그리고 이온성 전도 효과를 가지며 높은 에너지 효율을 보이므로 유기성 폐기물의 가용화에 대해 효과적인 방법이다. 본 연구는 고형물 함량이 높은 우분을 대상으로 MW를 이용하여 가용화 최적 조건을 도출하고 이를 토대로 MW의 유전가열 특성을 향상시키기 위해 화학적 촉매물질인 $H_2SO_4$과 NaCl을 첨가하여 우분의 가용화율과 가용화 방법에 따른 biochemical methane potential (BMP)을 평가하였다. 우분 고형물 농도 12%와 MW 출력 800 W 및 설정온도 $40^{\circ}C$ 조건에서 70.5 mg $SCOD_{increased}/kJ$로 에너지 대비 최대 가용화율을 보여주었으며, 이때의 SCOD 농도는 원시료 대비 53.2% 증가하였다. 가용화 최적 조건에서 화학적 촉매로 $H_2SO_4$를 주입하였을 경우 MW 단독 처리 대비 SCOD 농도는 36% 증가하였으며, NaCl을 주입하였을 경우 22.7% 증가하였다. BMP test에서도 우분 원시료 대비 MW를 이용한 가용화는 메탄 생성량이 6.7%, $H_2SO_4$를 주입한 MW 가용화는 13.3%, NaCl을 주입한 MW 가용화는 11.3% 증가하였다. 따라서 마이크로웨이브는 우분의 가용화 전처리에 효율적인 수단이며, 마이크로웨이브의 가용화 효율을 높이기 위해서는 화학적 촉매를 이용할 필요가 있다.

Keywords

References

  1. Jeong, K. H., Kim, J. K., Khan, M. A., Han, D. W. and Kwag, J. H., "A study on the characteristics of livestock manure treatment facility in Korea," J. Korean Organ. Resour. Recycl. Assoc., 22(4), 28-44(2014).
  2. Park, M. J., Cho, M. C., Kim, K. Y., Lee, Y. W., Jeong, B. H. and Lee, B., "Characteristics of livestock wastewater treatment technology using high temperature aeration process," J. Korean Soc. Urb. Environ., 13(3), 227-233(2013).
  3. Statistics report of livestock manure management and treatment. Ministry of Environment(2014).
  4. Ahn, K. H., Ryu, H. D. and Kim, Y. S., "Systematic review on management of livestock wastes for improving water quality," J. Korean Soc. Water Environ., 31(5), 576-582(2015). https://doi.org/10.15681/KSWE.2015.31.5.576
  5. International rules on dumping of wastes at sea to be strengthened with entry into force of 1996 protocol. International Maritime Organization(2006).
  6. 2015 current status of energy utilizing facilities using organic waste resource. Ministry of Environment(2016).
  7. Jin, Y., Hu, Z. and Wen, Z., "Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwavebased thermochemical pretreatment," Water Res., 43(14), 3493-3502(2009). https://doi.org/10.1016/j.watres.2009.05.017
  8. Aslanzadeh, S., Taherzadeh, M. J. and Horvath, I. S., "Pretreatment of straw fraction of manure for improved biogas production," Bioresour., 6(4), 5193-5205(2011).
  9. Carlsson, M., Lagerkvist, A. and Morgan-Sagastume, F., "The effects of substrate pre-treatment on anaerobic digestion systems: A review," Waste Manage., 32(9), 1634-1650(2012). https://doi.org/10.1016/j.wasman.2012.04.016
  10. Lee, J., Lee, J., Lim, J., Kim, Y., Byun, I. and Park, T., "The effect of strong acid and ionic material addition in the microwave-assisted solubilization of waste activated sludge," J. Kor. Soc. Environ. Eng., 37(1), 60-68(2015). https://doi.org/10.4491/KSEE.2015.37.1.60
  11. Li, J., Yang, Y., Chen, H., Jiang, F., Ling, J., Liu, M., Yan, F. and Xu, J., "Comparison of saccharification process by acid and microwave-assisted acid pretreated swine manure," Bioproc. Biosyst. Eng., 32(5), 649-654(2009). https://doi.org/10.1007/s00449-008-0288-3
  12. Chi, Y., Li, Y., Fei, X., Wang, S. and Yuan, H., "Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment," J. Environ. Sci., 23(8), 1257-1265(2011). https://doi.org/10.1016/S1001-0742(10)60561-X
  13. Shahriari, H., Warith, M., Hamoda, M. and Kennedy, K. J., "Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide," Waste Manage., 32(1), 41-52(2012). https://doi.org/10.1016/j.wasman.2011.08.012
  14. Tian, Y., Zuo, W., Ren, Z. and Chen, D., "Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety," Bioresour. Technol., 102(2), 2053-2061(2011). https://doi.org/10.1016/j.biortech.2010.09.082
  15. Tyagi, V. K. and Lo, S., "Microwave irradiation: A sustainable way for sludge treatment and resource recovery," Renew. Sustain. Energy Rev., 18, 288-305(2013). https://doi.org/10.1016/j.rser.2012.10.032
  16. Kunlan, L., Lixin, X., Jun, L., Jun, P., Guoying, C. and Zuwei, X., "Salt-assisted acid hydrolysis of starch to D-glucose under microwave irradiation," Carbohyd. Res., 331(1), 9-12(2001). https://doi.org/10.1016/S0008-6215(00)00311-6
  17. The generation and treatment of specified/designated waste (2012), Ministry of Environment(2013).
  18. Nkansah-Boadu, F., Srinivasan, A., Liao, P. H. and Lo, K. V., "Radiofrequency oxidation treatment of separated dairy manure," Process Biochem., 50(9), 1429-1433(2015). https://doi.org/10.1016/j.procbio.2015.05.020
  19. Chen, Y., Cheng, J. J. and Creamer, K. S., "Inhibition of anaerobic digestion process: A review," Bioresour. Technol., 99(10), 4044-4064(2008). https://doi.org/10.1016/j.biortech.2007.01.057
  20. APHA, AWWA, WEF, Standard method for the examination of water and wastewater. 21sted. American Public Health Association. Washington DC, 2005.
  21. Park, B., Ahn, J. H., Kim, J. and Hwang, S., "Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge," Water Sci. Technol., 50(9), 17-23(2004).
  22. Choi, J. S., Son, W. J., Kim, J. and Ahn, W. S., "Metalorganic framework MOF-5 prepared by microwave heating: Factors to be considered," Micro. Meso. Mater., 116(1-3), 727-731(2008). https://doi.org/10.1016/j.micromeso.2008.04.033
  23. Byun, I. G., Lee, J. H., Lee, J. M., Lim, J. S. and Park, T. J., "Evaluation of non-thermal effects by microwave irradiation in hydrolysis of waste-activated sludge," Water Sci. Technol., 70(4), 742-749(2014). https://doi.org/10.2166/wst.2014.295
  24. Eskicioglu, C., Terzian, N., Kennedy, K. J., Droste, R. L., and Hamoda, M., "Athermal microwave effects for enhancing digestibility of waste activated sludge," Water Res., 41(11), 2457-2466(2007). https://doi.org/10.1016/j.watres.2007.03.008
  25. Park, W. J., Ahn, J. H., Hwang, S. and Lee, C. K., "Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation," Bioresour. Technol., 101(1), S13-S16(2010). https://doi.org/10.1016/j.biortech.2009.02.062
  26. Danesh, P., Hong, S. M., Moon, K. W. and Park, J. K., "Phosphorus and heavy metal extraction from wastewater treatment plant sludges using microwaves for generation of exceptional qualitybiosolids," Water Environ. Res., 80(9), 784-795(2008). https://doi.org/10.2175/106143008X276714
  27. Yu, Q., Lei, H., Li, Z., Li, H., Chen, K., Zhang, X. H. and Liang, R. L., "Physical and chemical properties of wasteactivated sludge after microwave treatment," Water Res., 44(9), 2841-2849(2010). https://doi.org/10.1016/j.watres.2009.11.057
  28. Neyens, E., Baeyens, J., Weemas, M. and De Heyder, B., "Hot acid hydrolysis as a potential treatment of thickened sewage sludge," J. Hazard. Mater., 98(1-3), 275-293(2003). https://doi.org/10.1016/S0304-3894(03)00002-5
  29. Le, N. T., Julcour, C., Ratsimba, B. and Delmas, H., "Improving sewage sludge ultrasonic pretreatment under pressure by changing initial pH," J. Environ. Manage., 128, 548-554 (2013). https://doi.org/10.1016/j.jenvman.2013.06.001
  30. Tsubaki, S., Oono. K., Onda. A., Yanagisawa, K. and Azuma, J., "Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts," Bioresour. Technol., 123, 703-706(2012). https://doi.org/10.1016/j.biortech.2012.07.086
  31. Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H. and Lettinga, G., "Biotechnological treatment of sulfate-rich wastewaters," Crit. Rev. Environ. Sci. Technol., 28(1), 41-88(2010). https://doi.org/10.1080/10643389891254160