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ON CHARACTERIZATIONS OF THE NORMAL

DISTRIBUTION BY INDEPENDENCE PROPERTY

MIN-YOUNG LEE

Abstract. Let X and Y be independent identically distributed nonde-

generate random variables with common absolutely continuous probability
distribution function F (x) and the corresponding probability density func-
tion f(x) and E(X2) < ∞. Put Z = max(X,Y ) and W = min(X,Y ). In
this paper, it is proved that Z − W and Z + W or (X − Y )2 and X + Y

are independent if and only if X and Y have normal distribution.
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1. Introduction

Let X and Y be independent identically distributed(i.i.d.) random variables
with common absolutely continuous probability distribution function F (x) and
the corresponding probability density function f(x).

By definition, the random variable X has a normal distribution with param-
eters µ and σ2 if it has density

f(x) =
1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
, −∞ < x < ∞,

where −∞ < µ < ∞ and σ2 > 0.
It is known that its characteristic function is

φ(t) = exp

{
iµt− 1

2
σ2t2

}
.

Lukacs (1955) proved the following theorem : let X and Y be two nondegen-
erate and positive random variables, and suppose that they are independently
distributed. X/Y and X + Y are independently distributed if and only if both
X and Y have gamma distributions with the same scale parameter. Bansal
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et.al.(1999) showed the following theorem : let X and Y be i.i.d. and 2XY√
X2+Y 2

be standard normal distributed. Then X has a standard normal distribution.
Also, Lee and Galambos (2012) obtained that Z

Z+W and Z+W are independent

if and only if X and Y have gamma distribution where Z = max(X,Y ) and
W = min(X,Y ).

It is worth to consider such characterizations by independence property of
random variables.

Hence, in this paper, we are interested in the extended characterization that
Z − W and Z + W or (X − Y )2 and X + Y are independent if and only if X
and Y have normal distribution.

2. Main results

Theorem 2.1. Let X and Y be i.i.d. random variables with common abso-
lutely continuous probability distribution function F (x) and the corresponding
probability density function f(x) and E(X2) < ∞. Then Z−W and Z+W are
independent if and only if X and Y have normal distribution.

Proof. Write Z = max(X,Y ) and W = min(X,Y ). Since Z − W and Z + W
are transformation invariant statistics, by Lukacs and Laha (1964), Z − W is
independent of Z +W = X + Y for normal variables. So, we have to prove the
converse.

We denote the characteristic functions of Z−W , Z+W and (Z −W,Z +W )
by ϕ1(t), ϕ2(s) and ϕ(t, s), respectively.

The independence of Z −W and Z +W is equivalent to

ϕ(t, s) = ϕ1(t) · ϕ2(s). (2.1)

The left hand side of (2.1) becomes

ϕ(t, s) =

∫ ∫
−∞<x≤y<∞

exp {it(y − x) + is(x+ y)} f(x) f(y) dx dy

+

∫ ∫
−∞<y<x<∞

exp {it(x− y) + is(x+ y)} f(x) f(y) dx dy.

Also, the right hand side of (2.1) becomes

ϕ1(t)ϕ2(s) =

(∫ ∫
−∞<x≤y<∞

exp{it(y − x)}f(x) f(y) dx dy

+

∫ ∫
−∞<y<x<∞

exp{it(x− y)}f(x) f(y) dx dy

)
·
(∫ ∫

−∞<x≤y<∞
exp {is(x+ y)} f(x) f(y) dx dy

+

∫ ∫
−∞<y<x<∞

exp {is(x+ y)} f(x) f(y) dx dy

)
.
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Then (2.1) gives∫ ∞

−∞

∫ ∞

−∞
exp {it(|x− y|) + is(x+ y)} f(x) f(y) dx dy

=

(∫ ∞

−∞

∫ ∞

−∞
exp{it(|x− y|)}f(x) f(y) dx dy

)
·
(∫ ∞

−∞

∫ ∞

−∞
exp {is(x+ y)} f(x) f(y) dx dy

)
.

(2.2)

The integrals in (2.2) exist not only for reals t and s but also for complex values
t = u + iv, s = u∗ + iv∗, where u and u∗ are reals, for which v = Im(t) ≥ 0,
v∗ = Im(s) ≥ 0 and they are analytic for all t, s for v > 0, v∗ > 0 [see Lukacs
(1955)].

Differentiating (2.2) twice with respect to t and setting t = 0, we get∫ ∞

−∞

∫ ∞

−∞
(x− y)2 exp {is(x+ y)} f(x) f(y) dx dy

= θ

∫ ∞

−∞

∫ ∞

−∞
exp {is(x+ y)} f(x) f(y) dx dy.

(2.3)

where θ = E
[
(X − Y )2

]
.

Note that, by the assumed continuity of F (x), P (x = y) = 0, so θ > 0 .
Denote the characteristic function of X by

φ(s) =

∫ ∞

−∞
eisx f(x) dx. (2.4)

Then we know that

φ′(s) = i

∫ ∞

−∞
x eisx f(x) dx and φ′′(s) = −

∫ ∞

−∞
x2 eisx f(x) dx. (2.5)

By using (2.4) and (2.5), we can express (2.3) as a differential equation with
respect to the characteristic function φ(t) and get

−φ′′(s)φ(s) + (φ′(s))2 =
θ

2
{φ(s)}2

that is, {
φ(s)

φ′(s)

}′

=
θ

2

{
φ(s)

φ′(s)

}2

, θ > 0.

After integrating and taking the initial conditions φ(0) = 1, φ′(0) = iE(X),
we obtain

φ′(s)

φ(s)
= iE(X)− θ

2
s, θ > 0. (2.6)

Hence, from (2.6), by uniqueness theorem of the differential equation for θ > 0,
there exists a unique solution

φ(s) = exp {iE(X)s− θ

4
s2}.
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Consequently, F (x) is a normal distribution. �

Theorem 2.2. Let X and Y be i.i.d. random variables with common abso-
lutely continuous probability distribution function F (x) and the corresponding
probability density function f(x) and E(X2) < ∞. Then (X − Y )2 and X + Y
are independent if and only if X and Y have normal distribution.

Proof. Since (X − Y )2 and X + Y are transformation invariant statistics, by
Lukacs and Laha (1964), (X−Y )2 is independent of Z+W = X+Y for normal
variables. So, we have to prove the converse.

We denote the characteristic functions of (X−Y )2,X+Y and
(
(X − Y )2, X + Y

)
by φ1(t), φ2(s) and ϕ(t, s), respectively.

The independence of (X − Y )2 and X + Y is equivalent to

ϕ(t, s) = ϕ1(t) · ϕ2(s). (2.7)

Then (2.7) gives∫ ∞

−∞

∫ ∞

−∞
exp

{
it(x− y)2 + is(x+ y)

}
f(x) f(y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
exp{it(x− y)2}f(x) f(y) dx dy

·
∫ ∞

−∞

∫ ∞

−∞
exp {is(x+ y)} f(x) f(y) dx dy.

(2.8)

The integrals in (2.8) exist not only for reals t and s but also for complex values
t = u + iv, s = u∗ + iv∗, where u and u∗ are reals, for which v = Im(t) ≥ 0,
v∗ = Im(s) ≥ 0 and they are analytic for all t, s for v > 0, v∗ > 0 [see Lukacs
(1955)].

Differentiating (2.8) one time with respect to t and setting t = 0, we get∫ ∞

−∞

∫ ∞

−∞
(x− y)2 exp {is(x+ y)} f(x) f(y) dx dy

= θ

∫ ∞

−∞

∫ ∞

−∞
exp {is(x+ y)} f(x) f(y) dx dy.

(2.9)

where θ = E
[
(X − Y )2

]
.

Note that, by the assumed continuity of F (x), P (x = y) = 0, so θ > 0 .
Denote the characteristic function of X by

φ(s) =

∫ ∞

−∞
eisx f(x) dx. (2.10)

Then we know that

φ′(s) = i

∫ ∞

−∞
x eisx f(x) dx and φ′′(s) = −

∫ ∞

−∞
x2 eisx f(x) dx. (2.11)
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By using (2.10) and (2.11), we can express (2.9) as a differential equation
with respect to the characteristic function φ(t) and get

2φ′′(s)φ(s)− 2{φ′(s)}2 = −θ{φ(s)}2

that is,
φ′′(s)φ(s)− {φ′(s)}2

{φ(s)}2
= −θ

2
, θ > 0.

After integrating and taking the initial conditions φ(0) = 1, φ′(0) = iE(X),
we obtain

φ′(s)

φ(s)
= −θ

2
s+ iE[X], θ > 0. (2.12)

Hence, from (2.12), by uniqueness theorem of the differential equation for
θ > 0, there exists a unique solution

φ(s) = exp{iE[X]s− θ

4
s2}.

Consequently, F (x) is a normal distribution. �
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