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THE DYNAMICS OF POSITIVE SOLUTIONS OF A HIGHER

ORDER FRACTIONAL DIFFERENCE EQUATION WITH

ARBITRARY POWERS
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Abstract. The purpose of this paper is to investigate the local asymptotic
stability of equilibria, the periodic nature of solutions, the existence of

unbounded solutions and the global behavior of solutions of the fractional
difference equation

xn+1 =
αxn−(k+1)

β + γxp
n−kx

q
n−(k+2)

, n = 0, 1, ...

where the parameters α, β, γ, p, q are non-negative numbers and the initial
values x−(k+2),x−(k+1), ..., x−1, x0 ∈ R+.
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1. Introduction

In the past twenty years, many papers appeared focusing on the investigation
of the qualitative analysis of solutions of difference equations and their systems
(see [1, 5, 6, 10, 11, 15] and the references cited therein). One of the reasons for
this is a requirement for some techniques which can be used in studying equations
arising in mathematical models describing real life cases in population dynamics,
economics, probability theory, genetics, psychology and so on. That is, the the-
ory of difference equations gets a central position in applicable analysis. Hence,
it is very valuable to get the behavior of solutions of fractional difference equa-
tions and to discuss the local aysmptotic stability of their equilibrium points and
global behavior of solutions.
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According to us, it is of a great importance to investigate not only non-linear
difference equations, but also those equations which contain powers of arbitrary
positive degrees (see [8, 9, 16, 17] and the references cited therein).

The purpose of this paper is to study the local asymptotic stability of equi-
librium points, the periodic nature of solutions, the existence of unbounded so-
lutions and the global behavior of solutions of the following fractional difference
equation

xn+1 =
αxn−(k+1)

β + γxp
n−kx

q
n−(k+2)

, n ∈ N (1.1)

where the parameters α, β, γ, p, q are non-negative numbers and the initial values
x−(k+2),x−(k+1), ..., x−1, x0 are arbirary positive numbers such that the denom-
inator is always positive.

In [4], El-Owaidy et al. investigated the global behavior of the following
rational difference equation

xn+1 =
αxn−1

β + γxp
n−2

, n ∈ N,

with non-negative parameters and non-negative initial values.
By generalizing the results due to El-Owaidy et al. [4], in [3], Chen et al.

studied the dynamical behavior of the following rational difference equation

xn+1 =
αxn−k

β + γxp
n−l

, n ∈ N

where k, l ∈ N, the parameters are positive real numbers and the initial values
x−max{k,l},. . . ,x−1, x0 ∈ (0,∞).

In [2], Ahmed studied the dynamical behavior of the following rational differ-
ence equation

xn+1 =
αxn−1

β + γ
k∏

i=l

xpi

n−2i

, n ∈ N

where the parameters are non-negative real numbers and the initial values are
non-negative real numbers.

In [7], Erdogan et. al. investigated the dynamical behavior of positive solu-
tions of the following higher-order difference equation

xn+1 =
αxn−1

β + γ
t∑

k=1

xn−2k

t∏
k=1

xn−2k

, n ∈ N

where the parameters are non-negative real numbers and the initial values are
non-negative real numbers.

In [14], Karatas investigated the global behavior of the equilibria of the fol-
lowing difference equation

xn+1 =
Axn−m

B + C
2k+1∏
i=0

xn−i

, n ∈ N



A higher order fractional difference equation 269

where the parameters are non-negative real numbers and the initial values are
non-negative real numbers.

If some parameters of Eq.(1.1) are zero, then five equations emerge, that is, if
α = 0 in Eq.(1.1), then it is trivial, if β = 0 in Eq.(1.1), then it can be reduced
to a linear difference equation by the change of variables xn = eyn . If γ = 0 in
Eq.(1.1), then it is linear and finally, the case p = 0 or q = 0 was investigated in
[3].

Note that Eq.(1.1) can be reduced to the following fractional difference equa-
tion

yn+1 =
ryn−(k+1)

1 + ypn−ky
q
n−(k+2)

, n ∈ N (1.2)

by the change of variables xn = (βγ )
1

p+q yn with r = α
β . So, in order to study

Eq.(1.1), we will investigate Eq.(1.2).
As far as we examine, there is exactly no paper dealing with Eq.(1.1). There-

fore, in this paper, we focus on Eq.(1.1) in order to fill in the gap.

2. Preliminaries

For the completeness in the paper, we find useful to remind some basic con-
cepts of the difference equations theory as follows:

Let I be an interval of real numbers and let f : Ik+3 → I be a continuously
differentiable function. Then for any condition x−(k+2), x−(k+1), ..., x−1, x0 ∈ I,
the difference equation

xn+1 = f(xn, xn−1, ..., xn−(k+1), xn−(k+2)), n ∈ N (2.1)

has a unique positive solution {xn}∞n=−(k+2).

Definition 2.1. An equilibrium point of Eq.(2.1) is a point x that satisfies

x = f(x, x, ..., x).

The point x is also said to a fixed point of the function f.

Definition 2.2. Let x be a positive equilibrium of (2.1).
(a) x is stable if for every ε > 0, there is δ > 0 such that for every positive

solution {xn}∞n=−(k+2) of (2.1) with
∑0

i=−(k+2) |xi − x| < δ, |xn − x| < ε holds

for n ∈ N.
(b) x is locally asymptotically stable if x is stable and there is γ > 0 such
that limxn = x holds for every positive solution {xn}∞n=−(k+2) of (2.1) with∑0

i=−(k+2) |xi − x| < γ.

(c) x is a global attractor if limxn = x holds for every positive solution
{xn}∞n=−(k+2) of (2.1).

(d) x is globally asymptotically stable if x is both stable and global attractor.

Definition 2.3. The linearized equation of (2.1) about the equilibrium point x
is

yn+1 = ζ0yn + ζ1yn−1 + · · ·+ ζk+2yn−(k+2), n ∈ N (2.2)
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where

ζ0 =
∂f

∂xn
(x, x, ..., x), ζ1 =

∂f

∂xn−1
(x, x, ..., x), . . . , ζk+2 =

∂f

∂xn−(k+2)
(x, x, ..., x).

The characteristic equation of (2.2) is

λk+3 − ζ0λ
k+2 − ζ1λ

k+1 − ...− ζk+1λ− ζk+2 = 0. (2.3)

Definition 2.4. Any solution {xn}∞n=−(k+2) of Eq.(2.1) is said to non-oscillatory

solution if there exists n0 ≥ −(k + 2) such that either

xn > x for all n ≥ n0

or
xn < x for all n ≥ n0.

Also, {xn}∞n=−(k+2) is said to an oscillatory solution if it is not a non-oscillatory

solution.

The following result, known as the Linearized Stability Theorem, is very useful
in determining the local stability character of the equilibrium point x of equation
(2.1).

Theorem 2.1. (Linearized Stability Theorem) Consider Eq.(2.1) such that x is
a fixed point of f . If all roots of the function f about x lie inside the open unit
disk |λ| < 1, then x is locally asymtotically stable. If one of them has a modulus
greater than one, then x is unstable. The fixed point x of f is called a saddle
point if f has roots both inside and outside the unit disk. If any root of f has
absolute value equal to one, then the fixed point x of f is called a non-hyperbolic
point.

For other basic knowledge about difference equations, the reader is referred
to [12, 13].

3. Main Results

In this section we prove our main results.

Theorem 3.1. We have the following cases for the equilibrium points of Eq.(1.2);

i y0 = 0 is always the equilibrium point of Eq.(1.2).

ii If r > 1, then Eq.(1.2) has the positive equilibrium y1 = (r − 1)
1

p+q .
iii If r < 1 and 1

p+q is an even positive integer, then Eq.(1.2) has the positive

equilibrium y2 = (r − 1)
1

p+q which is always in the interval (0, 1).

Proof. The proof is easily obtained from the definition of equilibrium point. �

In the following theorems, we investigate the local asymptotic behavior of the
equilibria and the global behavior of solutions of Eq.(1.2) with r, p, q > 0 and
positive initial conditions.
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Theorem 3.2. For the local asymptotic stability of equilibria of Eq.(1.2), we
obtain the following results;
(i) If r < 1, then the zero equilibrium point y0 is locally asymptotically stable.
(ii) If r > 1, then the zero equilibrium point is locally unstable.
(iii) If r = 1, then the zero equilibrium point is non-hyperbolic point.

(iv) If r > 1 and k ∈ 2Z+, then the positive equilibrium point y1 = (r− 1)
1

p+q is
locally unstable.
(v) If r ∈ (0, 1) and 1

p+q is an even positive integer, then the positive equilibrium

point y2 = (r − 1)
1

p+q is locally unstable.

Proof. The linearized equation associated with Eq.(1.2) about zero equilibrium
is

zn+1 − rzn−(k+1) = 0, n ∈ N.
The characteristic polynomial of Eq.(1.2) about zero equilibrium is

λk+3 − rλ = 0.

So, the proof of (i), (ii) and (iii) follows immediately from Linearized Stability
Theorem.
For the proof (iv) suppose that r > 1, then the linearized equation associated

with Eq.(1.2) about y1 = (r − 1)
1

p+q is

zn+1 + p(1− 1

r
)zn−k − zn−(k+1) + q(1− 1

r
)zn−(k+2) = 0, n ∈ N.

Therefore, the characteristic polynomial of Eq.(1.2) about the equilibrium y1 =

(r − 1)
1

p+q is

λk+3 + p(1− 1

r
)λ2 − λ+ q(1− 1

r
) = 0.

If we set the function as follows;

h(λ) = λk+3 + p(1− 1

r
)λ2 − λ+ q(1− 1

r
) = 0,

then, it is clear that

h(−1) =
(p+ q)(r − 1)

r
> 0

and

lim
λ→−∞

h(λ) = −∞,

so, h(λ) has at least a root in the interval (−∞,−1). This completes the proof.
For the proof (v) we assume that r < 1, then the linearized equation associated

with Eq.(1.2) about y2 = (r − 1)
1

p+q is

tn+1 + p(1− 1

r
)tn−k − tn−(k+1) + q(1− 1

r
)tn−(k+2) = 0, n ∈ N.
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Therefore, the characteristic polynomial of Eq.(1.2) about the equilibrium y2 =

(r − 1)
1

p+q is

λk+3 + p(1− 1

r
)λ2 − λ+ q(1− 1

r
) = 0.

If we set the function as follows;

g(λ) = λk+3 + p(1− 1

r
)λ2 − λ+ q(1− 1

r
) = 0,

then, it is clear that

g(1) =
(p+ q)(r − 1)

r
< 0

and
lim
λ→∞

g(λ) = ∞,

so, g(λ) has at least a root in the interval (1,∞). This completes the proof. �

Theorem 3.3. Assume that r < 1, then the zero equilibrium point y0 of Eq.(1.2)
is globally asymptotically stable.

Proof. We know by Theorem 3.2(i) that the zero equilibrium point of Eq.(1.2)
is locally asymptotically stable, hence, it suffices to show that

lim
n→∞

yn = 0

for any positive solution {yn}∞n=−(k+2) of Eq.(1.2).

From Eq.(1.2), we have the following inequlity for all n ≥ 0;

0 ≤ yn+1 =
ryn−(k+1)

1 + ypn−ky
q
n−(k+2)

≤ ryn−(k+1).

In this sense, we have the following inequlities for i ∈ {0, 1, 2, ...};
yi(k+2)+1 ≤ ri+1y−k−1,

yi(k+2)+2 ≤ ri+1y−k,

...

yi(k+2)+k+2 ≤ ri+1y0.

Since r < 1, we have
lim
i→∞

ri+1 = 0,

hence, we obtain that
lim
n→∞

yn = 0.

Thus, the proof is complete. �

Theorem 3.4. Assume k is an even positive integer, then, Eq.(1.2) possesses
eventual prime period two solutions if and only if r = 1.
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Proof. Let

...,Φ,Ψ,Φ,Ψ,Φ,Ψ, ...

a period two solution of Eq.(1.2). Then, we eventually have

Φ =
rΦ

1 + Ψp+q
and Ψ =

rΨ

1 + Φp+q
. (3.1)

such that Φ ̸= Ψ. If both Φ and Ψ are non-zero, then we obtain from (3.1) that

Φ = Ψ = (r − 1)
1

p+q , which is a contradiction. Hence, either Φ or Ψ must be
equal to zero. Assume that Φ = 0 which implies that (r − 1)Ψ = 0, so r = 1.
In contrast, if r = 1, then choose the initial conditions such as y−(k+2) = y−k =
. . . = y0 = 0 and y−(k+1) = y−(k−1) = y−1 = δ > 0 or such as y−(k+2) = y−k =
. . . = y0 = δ > 0 and y−(k+1) = y−(k−1) = y−1 = 0. We can see by induction
that

. . . , 0, δ, 0, δ, . . .

is the prime period two solution of Eq.(1.2). �

Theorem 3.5. Assume that k is an odd positive integer, then, Eq.(1.2) has no
eventual prime period two solutions.

Proof. Assume that Eq.(1.2) has the prime period two solution

..., x, y, x, y, ...

then, we eventually have

x =
ry

1 + xp+q
and y =

rx

1 + yp+q

such that x ̸= y. Obviously, x = 0 implies y = 0 or vice versa. This case is
impossible. So we obtain that both x and y are greater than zero. So we have

xp+q(1 + xp+q)p+q+1 + rp+q(1− r2 + xp+q) = 0,

yp+q(1 + yp+q)p+q+1 + rp+q(1− r2 + yp+q) = 0,

that is, x and y are two distinct positive roots of f(z) = zp+q(1 + zp+q)p+q+1 +
rp+q(1− r2 + zp+q) = 0. Obviously, when r ≤ 1, the f(z) has no positive roots.
Now, let r > 1 and set 1 + zp+q = w. Then the function, g(w) = wp+q+2 −
wp+q+1 +wrp+q − rp+q+2, w > 1, has at least two distinct positive roots. How-
ever, g′(w) = wp+q [(p+ q + 2)w − (p+ q + 1)] + rp+q > 0 for any w ∈ (1,∞),
which indicates that g(w) is strictly increasing in the interval (1,∞). This im-
plies that the function g(w) does not have two distinct positive roots at all in
the interval (1,∞). Thus, Eq.(1.2) does not have the prime period two solution
when r > 1. This completes the proof. �

For the oscillatory solution of Eq.(1.2) , we have the following results.
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Theorem 3.6. Suppose that r > 1, k ∈ 2Z+ and let {yn}∞n=−(k+2) be any

solution of Eq.(1.2) such that

y−(k+2), y−k, ...,y−2, y0 ≥ y1 and y−(k+1), y−(k−1), ...,y−3, y−1 < y1 (3.2)

or

y−(k+2), y−k, ...,y−2, y0 < y1 and y−(k+1), y−(k−1), ...,y−3, y−1 ≥ y1 (3.3)

holds. Then, {yn}∞n=−(k+2) oscillates about the positive equilibrium point y1 =

(r − 1)
1

p+q with semicycles of length one.

Proof. Suppose that r > 1 and the case (3.2) holds for the solution {yn}∞n=−(k+2).

From Eq.(1.2), it is clear that

y1 =
ry−(k+1)

1 + yp−ky
q
−(k+2)

< y1 = (r − 1)
1

p+q ,

y2 =
ry−k

1 + yp−(k−1)y
q
−(k+1)

> y1 = (r − 1)
1

p+q ,

· · ·
yk+1 =

ry−1

1 + yp0y
q
−2

< y1 = (r − 1)
1

p+q , yk+2 =
ry0

1 + yp1y
q
−1

> y1 = (r − 1)
1

p+q .

So, the proof follows by induction. For the case (3.3) the proof is similar and
will be omitted. �

Corollary 3.7. Suppose that r < 1, k ∈ 2Z+, 1
p+q ∈ 2Z+and let {yn}∞n=−(k+2)

be any solution of Eq.(1.2) such that

y−(k+2), y−k, ...,y−2, y0 ≥ y2 and y−(k+1), y−(k−1), ...,y−3, y−1 < y2

or

y−(k+2), y−k, ...,y−2, y0 < y2 and y−(k+1), y−(k−1), ...,y−3, y−1 ≥ y2

holds. Then, {yn}∞n=−(k+2) oscillates about the positive equilibrium point y2 =

(r − 1)
1

p+q with semicycles of length one.

In respect of the unbounded solutions of Eq.(1.2), the following result is re-
produced.

Theorem 3.8. Assume r > 1, k ∈ 2Z+, then Eq.(1.2) possesses unbounded so-
lutions. Especially, every solution of Eq.(1.2) which oscillates about the positive

equilibrium point y1 = (r − 1)
1

p+q with semicycles of length one is unbounded.

Proof. From Theorem 3.6, we can assume without loss of generality that the
solution {yn}∞n=−(k+2) of Eq.(1.2) is such that

y2n+1 > y1 = (r − 1)
1

p+q and y2n+2 < y1 = (r − 1)
1

p+q , for all n ≥ 0.
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Then,

y2n+2 =
ry2n−k

1 + yp2n−k+1y
q
2n−k−1

< y1 = (r − 1)
1

p+q

and
y2n+3 =

ry2n−k+1

1 + yp2n−k+2y
q
2n−k

> y1 = (r − 1)
1

p+q .

Thus, we obtain that
lim

n→∞
y2n+1 = ∞

and
lim

n→∞
y2n+2 = 0

which completes the proof. �
Corollary 3.9. Assume r < 1, 1

p+q ∈ 2Z+ and k ∈ 2Z+, then Eq.(1.2) possesses

unbounded solutions. Especially, every solution of Eq.(1.2) which oscillates about

the positive equilibrium point y2 = (r − 1)
1

p+q with semicycles of length one is
unbounded.

Open Problem Investigate dynamical behavior of Eq.(1.1) where the pa-
rameters α, β, γ, p, q are non-negative numbers, k is an odd number and the
initial values x−(k+2), x−(k+1), ..., x−1, x0 are non-negative numbers.
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