
J. Appl. Math. & Informatics Vol. 35(2017), No. 3 - 4, pp.387 - 397
https://doi.org/10.14317/jami.2017.387

LOCAL SYNCHRONIZATION OF MARKOVIAN NEURAL

NETWORKS WITH NONLINEAR COUPLING

CHUNJI LI∗ AND XIAOTONG REN

Abstract. In order to react the dynamic behavior of the system more
actually, it is necessary to solve the first problem of synchronization for
Markovian jump complex network system in practical engineering prob-

lem. In this paper, the problem of local stochastic synchronization for
Markovian nonlinear coupled neural network system is investigated, in-
cluding nonlinear coupling terms and mode-dependent delays, that is less
restriction to other system. By designing the Lyapunov-Krasovskii func-

tional and applying less conservative inequality, we get a new criterion
to ensure local synchronization in mean square for Markovian nonlinear
coupled neural network system. The criterion introduced some free ma-
trix variables, which are less conservative. The simulation confirmed the

validity of the conclusion.
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1. Introduction

In order to meet the needs of engineering applications, the stability of Mar-
kovian jump systems has been widely studied. It is well known that element
fault and sudden disturbance usually exist in the real systems, and caused the
abrupt changing of the structure as well as parameter. Thus, for purpose of
reacting the dynamic behavior of the system more actually, the research on syn-
chronization for Markovian jump complex network systems has been attracted
much attention([1], [2], [10]).

The phenomenon of local stochastic synchronization in the engineering appli-
cations has been highly concerned, such as brain science, secure communication
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and the evaluation of reputation([3], [6], [7]). Hence, it is significant to re-
search the local synchronization of complex networks. Local synchronization is
defined by the nodes of a group in the networks can be synchronized while in
the global of the networks cannot be synchronized ([6]). The time delay is a
familiar problem within the real systems because of the congestions of network
communication as well as limited speed of the signal transmission. Thus the
investigation of the discrete time-delays and continuous time-delays has been
drawn in lots of researches on the complex networks. In [3], the problem of local
stochastic synchronization for Markovian neural-type complex networks within
partial information on transition probabilities was studied. In [8], the authors
investigated the synchronization for the neural complex dynamic networks with
distribution time delays where the parameter of the Markovian jump system is
unknown.

Above the all discussions, this paper focus on the local stochastic synchroniza-
tion for Markovian nonlinear coupled neural network system, including nonlin-
ear coupling terms and mode-dependent delays, that is less restriction to other
systems. By designing the Lyapunov-Krasovskii functional and applying less
conservative inequality, we get a new criterion to ensure local synchronization
in mean square for Markovian nonlinear coupled neural network system. The
numerical example is given to confirm the effectiveness of the conclusion.

2. Problem statement and preliminaries

Consider the following Markovian nonlinear coupled neural network system:

ẋk (t) = −C (rt)xk (t) +A (rt) f (xk (t)) +B (rt) f (xk (t− τrt (t))) + Uk (t)

+

N∑
j=1

G1
ij (rt) η1 (rt) f(xj (t)) +

N∑
j=1

G2
ij (rt) η2 (rt) f (xj (t− τrt (t))) ,

(1)

where xk (t) = [xk1 (t) , xk2 (t) , . . . , xkn (t)]
T
(k = 1, 2, . . . , N) is the real state

vector of the k-th node. C (rt) = diag [c1 (rt) , c2 (rt) , . . . , cn (rt)] is a positive
matrix. A (rt) = (aij (rt))n×n, B (rt) = (bij (rt))n×n, and the external input of

the real state vector of the k-th node is Uk (t) = [Uk1 (t) , Uk2 (t) , . . . , Ukn (t)]
T
.

τrt (t) is the time-delay dependent on the Markov mode, τ1rt ≤ τrt (t) ≤ τ2rt ,

τ̇rt (t) ≤ hr, τ
1 = min τ1rt , τ

2 = max τ2rt , f (xk (t)) is the nonlinear output of the
real state vector of the k-th node. η1 (rt) and η2 (rt) denote the inner coupling
matrices between the nodes, G1 (rt) and G2 (rt) are coupling configuration n×n
matrices of the topological structure of the network, satisfying the following
conditions:

Gq
ij (rt) ≥ 0, i ̸= j; Gq

ii (rt) = −
N∑

j=1,j ̸=i

Gq
ij (rt) , q = 1, 2.
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In the probability space, {rt, t ≥ 0} be the right continuous Markovian process
of the finite state space ζ = {1, 2, . . . , N} and take values in the space ζ, with
transition probabilities Π = (πij), i, j ∈ ζ,

Pr {rt+∆t = j |rt = i} =

{
πij∆t+ o (∆t) , i ̸= j,
1 + πii∆t+ o (∆t) , i = j,

where πij ≥ 0 (i ̸= j) is the transition rate from mode i at time t to mode j at

time t+∆t, πii = −
N∑

j=1,j ̸=i

πij .

Definition 1. The local synchronization in mean square manifold is defined as

S
′
= {x = (x1 (s) , x2 (s) , . . . , xN (s)) : xk (s) ∈ C ([−τ, 0] ,Rn)}

with xk (s) = xl (s) , k, l = 1, 2, . . . ,m.

Let R̂ represent a ring and T
(
R̂,K

)
be the set of matrices with entries R̂

such that the sum of each row is equal to some K ∈ R̂.

Definition 2. The system (1) is said to be locally asymptotically synchronized
if

lim
t→∞

ε
{
∥xk (t)− xl (t)∥2 = 0, k, l = 1, 2, . . . ,m

}
for any initial values.

Assumption 1. ([9]) For any x1, x2 ∈ R, exist constants e−l , e+l such that

e−l ≤ fl(x1)−fl(x2)
x1−x2

≤ e+l , l = 1, 2, . . . ,m, and denote

E1 = diag
(
e+1 e

−
1 , . . . ,e

+
me−m

)
, E2 = diag

(
e+1 + e−1

2
, . . . ,

e+m + e−m
2

)
.

Assumption 2. ([3]) Let rt = r ∈ ζ. The coupling configuration matrices
Gq

r (q = 1, 2) is the following:

Gq
r =

(
Gq

11,r Gq
12,r

Gq
21,r Gq

22,r

)
,

where

Gq
11,r ∈ Rm×m, Gq

22,r ∈ R(N−m)×(N−m),

Gq
12,r = [aqr, a

q
r, . . . , a

q
r]

T ∈ R(m)×(N−m), Gq
21,r = [bqr, b

q
r, . . . , b

q
r]

T ∈ R(N−m)×(m),

aqr =
[
aq1,r, a

q
2,r, . . . , a

q
(N−m),r

]T
, bqr =

[
bq1,r, b

q
2,r, . . . , b

q
m,r

]T
,

U1 (t) = U2 (t) = · · · = Um (t) .
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Lemma 1. ([5]) Let G ∈ T
(
R̂,K

)
be an N×N matrix and H := (Hij)(N−1)×(N−1)

with entries

Hij :=

j∑
k=1

(
G(ik) −G(i+1,k)

)
, i, j ∈ {1, 2, . . . , N − 1} .

Then

MG = HM, H = MGJ,

where

M =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 · · · 1 −1


(N−1)×N

,

J =


1 1 1 1 · · · 1
0 1 1 1 · · · 1
...

...
...

...
. . .

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


N×(N−1)

.

Lemma 2. ([6]) Define H̃q = MG
(q)
11 J ∈ R(m−1)×(m−1), we have M̃G(q) =

H̃qM̃ , where

J̃ =



1 1 1 1 · · · 1
0 1 1 1 · · · 1
...

...
...

...
. . .

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0
− − − − − −
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 0


N×(m−1)

=

(
J
OT

)
,

M̃ =


1 −1 0 0 · · · 0 0 | 0 · · · 0
0 1 −1 0 · · · 0 0 | 0 · · · 0
...

...
...

...
. . .

...
... |

...
. . .

...
0 0 0 0 · · · 1 −1 | 0 · · · 0


(m−1)×N

=
(
M O

)
,

and M ∈ R(m−1)×m, O ∈ R(m−1)×(N−m), J ∈ Rm×(m−1).
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Lemma 3. ([4]) The positive matrix M and the differentiable function ω ∈ Rn

take any values in the interval [a, b], satisfy the followings:∫ b

a

ω̇T (u)Mω̇ (u) du ≥ 1

b− a
ω̃T (a, b) M̄ω̃ (a, b) ,

M̄ =

 M −M 0
∗ M 0
∗ ∗ 0

+
π2

4

 M M −2M
∗ M −2M
∗ ∗ 4M

 ,

where ω̃ (a, b) =
[
ω (b) , ω (a) , 1

b−a

∫ b

a
ω (u) du

]T
.

3. Main results

In this section, by designing the Lyapunov-Krasovskii functional and applying
the relevant lemma, we give the local synchronization in mean square criterion
for system (1).

By Assumption 2, the system (1) can be formulated as follows:

ẋk (t) = −Crxk (t) +Arf (xk (t)) + Uk (t) +Brf (xk (t− τr (t)))

+

N∑
j=1

G1
kj,rη1rf(xj (t)) +

N∑
j=1

G2
kj,rη2rf (xj (t− τrt (t))) , (2)

k = 1, 2, . . . , N . According to Lemma 2, we define

µ = M̃ ⊗ In,

C̄r = In ⊗ Cr, C̄
′

r = Im−1 ⊗ Cr,

Ār = In ⊗Ar, Ā
′

r = Im−1 ⊗Ar,

B̄r = In ⊗Br, B̄
′

r = Im−1 ⊗Br,

Ē1 = Im−1 ⊗ E1, Ē2 = Im−1 ⊗ E2,

x (t) =
[
xT
1 (t) , xT

2 (t) , . . . , xT
N (t)

]T
,

Ū (t) =
[
UT
1 (t) , UT

2 (t) , . . . , UT
N (t)

]T
,

f (x (t)) =
[
fT (x1 (t)) , f

T (x2 (t)) , . . . f
T (xN (t))

]T
.

Then the system (2) can be rewritten as the following form:

ẋk (t) = −C̄rx (t) + Ārf (x (t)) + Ū (t) + B̄rf (x (t− τr (t)))

+ η̄1rf (x (t)) + η̄2rf (x (t− τr (t))) . (3)

Theorem 4. Under the Assumptions 1 and 2, if there exist positive definite
matrices: Pr,Wr, Vr, V,W ∈ R(m−1)n×(m−1)n, and positive definite matrices:

� :=

(
�11 �12

∗ �22

)
∈ R2(m−1)n×2(m−1)n, with � = Qr, Sr, Tr, Q, S, T, and

positive diagonal matrices Rlr ∈ R(m−1)n×(m−1)n (l = 1, 2, 3, 4, and r ∈ ξ), such
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that the following linear matrix inequalities (4) and (5) hold, then the system
(3) can be denoted locally asymptotically synchronized in mean square,

N∑
j=1,j ̸=r

πrjΥj −Υ ≤ 0, (4)

where Υ denotes Q,S, T, V,W respectively, and

θr =



θ11,r 0 0 0 0 0 θ17,r 0 θ19,r 0 0
∗ θ22,r 0 θ24,r θ25,r 0 0 θ28,r 0 0 0
∗ ∗ θ33,r 0 0 0 0 0 θ39,r 0 0
∗ ∗ ∗ θ44,r θ45,r 0 0 0 0 θ410,r 0
∗ ∗ ∗ ∗ θ55,r 0 0 0 0 0 θ511,r
∗ ∗ ∗ ∗ ∗ θ66,r 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ θ77,r 0 θ79,r 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ θ88,r 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ θ99,r 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ θ1010,r 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ θ1111,r


< 0,

(5)
where

θ11,r = −2PrC̄
′

r +Q11
r + τ2Q11 + τ12S11 + τ12r T 11

r + k1T11

+C̄
′

rϕrC̄r + τ2rWr + k2W +
∑
j∈ξ

πrjpj −R1rĒ1,

θ17,r = PrĀ
′

r + PrH̄1r +Q12
r + τ12S12 + τ12r T 12

r + k1T12

−(C̄
′

r)
TϕrĀ

′

r − (C̄
′

r)
TϕrH̄1r +R1rĒ2,

θ19,r = PrB̄
′

r + PrH̄2r − (C̄
′

r)
TϕrB̄

′

r − (C̄
′

r)
TϕrH̄2r,

θ22,r = S11
r − 1

τ12r

(
Vr +

π2

4
Vr

)
−R3rĒ1,

θ24,r = − 1

τ12r

(
−Vr +

π2

4
Vr

)
, θ25,r =

π2

2 (τ12r )
2Vr, θ28,r = S12

r +R3rĒ2,

θ33,r = − (1− h1)Q
11
r −R2rĒ1, θ39,r = − (1− h1)Q

12
r −R2rĒ2,

θ44,r = −S11
r − 1

τ12r

(
Vr +

π2

4
Vr

)
−R4rĒ1,

θ45,r =
π2

2 (τ12r )
2Vr, θ410,r = −S12

r +R4rĒ2,

θ55,r = − π2

(τ12r )
3Vr −

1

τ12r
T 11
r , θ511,r = − 1

τ12r
T 12
r , θ66,r = − 1

τ2r
Wr,

θ77,r = Q22
r + τ2Q22 + τ12S22 + τ12r T 22

r + k1T
22 +

(
Ā

′

r

)T

ϕrĀ
′

r

+
(
Ā

′

r

)T

ϕrH̄1r +
(
H̄1r

)T
ϕrĀ

′

r +
(
H̄1r

)T
ϕrH̄1r −R1r,

θ79,r =
(
Ā

′

r

)T

ϕrB̄
′

r +
(
Ā

′

r

)T

ϕrH̄2r +
(
H̄1r

)T
ϕrB̄

′

r +
(
H̄1r

)T
ϕrH̄2r,



Local Synchronization of Markovian Neural Networks with Nonlinear Coupling 393

θ88,r = S22
r −R3r,

θ99,r = − (1− h1)Q
22
r +

(
B̄

′

r

)T

ϕrB̄
′

r +
(
B̄

′

r

)T

ϕrH̄2r +
(
H̄2r

)T
ϕrB̄

′

r

+
(
H̄2r

)T
ϕrH̄2r −R2r,

θ1010,r = −S22
r −R4r, θ1111,r = − 1

τ12r
T 22
r ,

k1 =

(
τ2
)2 − (

τ1
)2

2
, k2 =

(
τ2
)2

2
, ϕr = τ12r V + k1V,

H̄qr = MGq
11,rJ ⊗ ηqr (q = 1, 2) ,

τ12r = τ2r − τ1r , τ12 = τ2 − τ1.

Proof. Consider the following Lyapunov-Krasovskii functional

V (x (t) , t, r) =
9∑

m=1

Vm (x (t) , t, r) , (6)

where

V1 (x (t) , t, r) = xT (t)µTPrµx (t) ,

V2 (x (t) , t, r) =

∫ t

t−τr

θT (s)Qrθ (s) ds,

V3 (x (t) , t, r) =

∫ 0

−τ2

∫ t

t+υ

θT (s)Qθ (s) dsdυ,

V4 (x (t) , t, r) =

∫ t−τ1
r

t−τ2
r

θT (s)Srθ (s) ds,

V5 (x (t) , t, r) =

∫ −τ1

−τ2

∫ t

t+υ

θT (s)Sθ (s) dsdυ,

V6 (x (t) , t, r) =

∫ −τ1
r

−τ2
r

∫ t

t+υ

θT (s)Trθ (s) dsdυ,

V7 (x (t) , t, r) =

∫ −τ1

−τ2

∫ 0

υ

∫ t

t+α

θT (s)Tθ (s) dsdαdυ,

V8 (x (t) , t, r) =

∫ −τ1
r

−τ2
r

∫ t

t+υ

(µẋ (s))
T
Vr (µẋ (s)) dsdυ

+

∫ 0

−τ2
r

∫ t

t+υ

(µx (s))
T
Wr (µx (s)) dsdυ,

V9 (x (t) , t, r) =

∫ −τ1

−τ2

∫ 0

υ

∫ t

t+α

(µẋ (s))
T
V (µẋ (s)) dsdαdυ
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+

∫ 0

−τ2

∫ 0

υ

∫ t

t+α

(µx (s))
T
W (µx (s)) dsdαdυ,

where µ = M̃ ⊗ In, and θ (t) = [µx (t) , µf (x (t))]
T
.

According to the structure of µ , we have

µC̄r = C̄
′

rµ, µĀr = Ā
′

rµ, µB̄r = B̄
′

rµ, µŪ (t) = 0, µη̄qr = H̄qrµ.

Let L be the weak infinitesimal generator, and

ξ (t, r) =
[
(µx (t))T ,

(
µx

(
t− τ1

r (t)
))T

, (µx (t− τr (t)))
T ,

(
µx

(
t− τ2

r (t)
))T

,(∫ t−τ1
r

t−τ2
r
µx (s) ds

)T

,
(∫ t

t−τ2
r
µx (s) ds

)T

, (µf (x (t)))T ,
(
µf

(
x
(
t− τ1

r

)))T
,

(µf (x (t− τr (t))))
T ,

(
µf

(
x
(
t− τ2

r (t)
)))T

,
(∫ t−τ1

r

t−τ2
r
µf (x (s)) ds

)T
]T

.

According to Lemma 3 and Assumption 1, we can obtain

ε {LV (x (t) , t, r)} ≤ ε
{
ξT (t, r) θrξ (t, r)

}
.

If θr < 0, we have

ε {LV (x (t) , t, r)} ≤ −λε
{
∥µx (t) ∥2

}
,

where λ = minr∈ς λmin (−θr) > 0, thus

V (x (t) , t, r) ≤ V (x (0) , 0, r0) .

Since

ε {V (x (t) , t, r)} − ε {V (x (0) , 0, r0)} = ε

{∫ t

0

LV (x (s) , s, rs) ds

}
,

there exists a constant γ, satisfying

γε
{
∥µx (t) ∥2

}
≤ ε {V (x (t) , t, r)}

= ε {V (x (0) , 0, r0)}+ ε

{∫ t

0

LV (x (s) , s, rs) ds

}
≤ ε {V (x (0) , 0, r0)} − λ

∫ t

0

ε
{
∥µx (s) ∥2

}
ds.

The proof is completed. �

4. Simulation

In this section, a numerical example is given to confirm the effectiveness of the
proposed method. Let us consider the following Markovian nonlinear coupling
neural networks:

ẋk (t) = −Crxk (t) +Arf (xk (t)) + Uk (t) +Brf (xk (t− τr (t)))

+
4∑

j=1

G1
kj,rη1rf (xj (t)) +

4∑
j=1

G2
kj,rη2rf (xj (t− τrt (t))) ,

k = 1, 2, 3, 4, and r = 1, 2,
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in which x (t) =

[
x1 (t)
x2 (t)

]
, f (x (t)) =

[
tanhx1 (t)
tanhx2 (t)

]
, τ1 (t) = 0.5 + 0.4 sin (t) ,

τ2 (t) = 0.4 + 0.3 sin (t) , and

C1 =

(
1.2 0
0 1.2

)
, A1 =

(
−2.8 0.8
−0.7 −2.1

)
, B1 =

(
2.6 −1.5
0.1 2.6

)
,

C2 =

(
1.3 0
0 1.3

)
, A2 =

(
−2.1 0.2
−0.2 −2.5

)
, B2 =

(
2.7 −0.7
0.3 1.8

)
,

η1r =

(
5.3 0
0 4.9

)
, E1 =

(
0 0
0 0

)
,

η2r =

(
0.5 0
0 0.5

)
, E2 =

(
0.5 0
0 0.5

)
,

Π =

(
−0.9 0.9
1.3 −1.3

)
,

Ū = [0.22, 0.42, 0.22, 0.42, 0.92, 0.02, 0.13, 0.64]
T
,

τ11 = 0.1, τ21 = 0.9, τ12 = 0.1, τ22 = 0.7,

h1 = 0.4, h2 = 0.3,

Gq
1 =


−16.12 14.20 0.96 0.96
14.20 −16.12 0.96 0.96
0.03 0.03 −0.08 0.02
0.03 0.03 0.02 −0.08

 ,

Gq
2 =


−13.19 11.35 0.92 0.92
11.35 −13.19 0.92 0.92
0.04 0.04 −0.09 0.01
0.04 0.04 0.01 −0.09

 .

By using Matlab LMI Toolbox, we can obtain a set of feasible solutions as follows
(we just list a section of the obtained matrices for space consideration)

P1 =

(
0.4830 −0.0001
−0.0001 0.6999

)
, P2 =

(
0.4426 −0.0001
−0.0001 0.6591

)
.

According to Theorem 4, we obtain that the first two nodes are synchronized in
mean square, while in the whole network it is cannot be achieved, as shown in
the follow Fig. 1 and Fig. 2, which are calculated by

e1 (t) =
2∑

i=1

(x1i − x2i)
2
, e2 (t) =

2∑
i=1

4∑
j=2

(x1i − xji)
2
.
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Fig. 1. Synchronization error e1(t) of the first two nodes.

Fig. 2. Synchronization error e2(t) of the all nodes.

5. Conclusion

This paper research the novel delay-dependent local synchronization of the
Markovian nonlinear coupled networks. By designing the Lyapunov-Krasovskii
functional and applying less conservative inequality, we get a new criterion to
ensure local synchronization in mean square for Markovian nonlinear coupled
neural network system. The new criterion to solving practical problems is more
conducive, reduce the difficulty for calculation. Finally the simulation demon-
strates the effectiveness of the conclusion.
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