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A RELATION OF GENERALIZED q-w-EULER NUMBERS AND

POLYNOMIALS

M.J. PARK, Y.R. KIM* AND H.Y. LEE

Abstract. In this paper, we study the generalizations of Euler numbers
and polynomials by using the q-extension with p-adic integral on Zp. We

call these: the generalized q-w-Euler numbers E
(α)
n,q,w(a) and polynomials

E
(α)
n,q,w(x; a). We investigate some elementary properties and relations for

E
(α)
n,q,w(a) and E

(α)
n,q,w(x; a).
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1. Introduction

Many mathematicians are interested in the Euler numbers and polynomials
because they possess many interesting properties and arise in many areas of
mathematics and physics. Due to these reasons, recently various analogues for
Euler numbers and polynomials have been studied. C. S. Ryoo and H. Y. Lee
studied the generalized w-Euler numbers and polynomials and they observed
that the distribution of roots for En,q,w(x; a) is different from the Euler polyno-
mials En(x) = 0 (see [4]).

Throughout this paper, Zp, Qp, Cp, N, Z, Q will be denote the ring of p-
adic integers, the field of p-adic rational numbers, the completion of algebraic
closure of Qp, the set of natural numbers, the ring of rational integers, the field
of rational numbers, the set of complex numbers respectively and Z+ = N∪{0}.

Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) =
p−1. When one talks of q-extension, q is considered in many ways such as an
indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C
one normally assume that |q| < 1. If q ∈ Cp, then we normally assume that
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|q − 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p ≤ 1. Throughout this paper,
we use the notation:

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1 + q
(see [1-2, 4-9]) .

Hence limq→1[x]q = x for any x with |x|p ≤ 1 in the present p-adic case. For

g ∈ UD(Zp) = {g|g : Zp → Cp is a uniformly differentiable function},

the fermionic p-adic q-integral on Zp is defined by T. Kim as below:

I−1(g) =

∫
Zp

g(x)dµ−1(x) = lim
N→∞

1

[pN ]−1

pN−1∑
x=0

g(x)(−1)x. (1)

Let

Tp = ∪m≥1Cpm = lim
m→∞

Cpm

where Cpm = {w|wpm

= 1} is the cyclic group of order pm. For w ∈ Tp, we
denote by ϕw : Zp → Cp the locally constant function given by x 7−→ wx.

If we take g1(x) = g(x+ 1) in (1), then we easily see that

I−1(g1) + I−1(g) = 2g(0). (2)

From (2), we obtain

I−1(gn) + (−1)n−1I−q(g) = 2
n−1∑
l=0

(−1)n−1−lg(l), (3)

where gn(x) = g(x+ n) (see [1-2, 4-9]).
As well-known definition, the Euler polynomials are defined by

F (t) =
2

et + 1
= eEt =

∞∑
n=0

En
tn

n!

and

F (t, x) =
2

et + 1
ext = eE(x)t =

∞∑
n=0

En(x)
tn

n!

with the usual convention of replacing En(x) by En(x). In the special case,
x = 0, En(0) = En are called the n-th Euler numbers (see [1-2, 4-9]).

The purpose of this paper is to study the generalized q-w-Euler numbers

E
(α)
n,q,w(a) and polynomials E

(α)
n,q,w(x; a) which are q-analogues of the generalized

w-Euler numbers and polynomials, respectively.
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2. The generalized q-w-Euler numbers and polynomials

In this section, we study the generalized q-w-Euler numbers E
(α)
n,q,w(a) and

polynomials E
(α)
n,q,w(x; a). To do this, we define the notions of the generalized

q-w-Euler numbers E
(α)
n,q,w(a) and polynomials E

(α)
n,q,w(x; a) using fermionic inte-

gral.

Definition 2.1. For a ∈ R+, t ∈ R and w ∈ C, the generalized q-w-Euler
numbers and polynomials is given by

∞∑
n=0

E(α)
n,q,w(x; a)

tn

n!
=

∫
Zp

wayet[ay+x]qαdµ−1(y) (4)

and
∞∑

n=0

E(α)
n,q,w(a)

tn

n!
=

∫
Zp

waxet[ax]qαdµ−1(x). (5)

From Definition 2.1 and some calculations, we get

∞∑
n=0

E(α)
n,q,w(x; a)

tn

n!
=

∫
Zp

wayet[ay+x]qαdµ−1(y)

= lim
N→∞

1

[pN ]−1

pN−1∑
y=0

wayet[ay+x]qα (−1)y

= lim
N→∞

pN−1∑
y=0

(−wa)y
∞∑

n=0

[ay + x]nqα
tn

n!

=
∞∑

n=0

(
1

1− qα

)n

lim
N→∞

pN−1∑
y=0

(−wa)y(1− qα(ay+x))n
tn

n!

=
∞∑

n=0

(
1

1− qα

)n

lim
N→∞

pN−1∑
y=0

(−wa)y
n∑

l=0

(
n

l

)
(−1)lqαaylqαxl

tn

n!

=

∞∑
n=0

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl lim

N→∞

pN−1∑
y=0

(−wa)yqαayl
tn

n!

=
∞∑

n=0

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl

2

1 + waqαal
tn

n!
.

Then we get

E(α)
n,q,w(x; a) = 2

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl

1

1 + waqαal
(6)
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Also from some calculations, we get

E(α)
n,q,w(x; a) = 2

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl

1

1 + waqαal

= 2

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl

∞∑
k=0

(−waqαal)k

= 2

(
1

1− qα

)n ∞∑
k=0

(−1)kwak
n∑

l=0

(
n

l

)
(−1)lqαxlqαalk

= 2

(
1

1− qα

)n ∞∑
k=0

(−1)kwak(1− qαx+αak)n

= 2
∞∑
k=0

(−1)kwak

(
1− qα(x+ak)

1− qα

)n

= 2
∞∑
k=0

(−1)kwak[x+ ak]nqα

=

∞∑
k=0

2(−1)kwak[x+ ak]nqα .

Therefore we get

E(α)
n,q,w(x; a) = 2

∞∑
k=0

(−1)kwak[x+ ak]nqα .

In the above result, if x = 0, then we get

E(α)
n,q,w(a) = 2

∞∑
k=0

(−1)kwak[ak]nqα .

Hence we get the theorem as below:

Theorem 2.2. For a ∈ R+ and w ∈ C, we get

E(α)
n,q,w(x; a) = 2

∞∑
k=0

(−1)kwak[x+ ak]nqα (7)

and

E(α)
n,q,w(a) = 2

∞∑
k=0

(−1)kwak[ak]nqα . (8)

From (6) and some calculations, we get

E
(α)
n,q−1,w−1(a− x; a) = 2

(
1

1− q−α

)n n∑
l=0

(
n

l

)
(−1)lq−α(a−x)l 1

1 + w−aq−αal
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= 2(−1)nqαn
(

1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxlq−αal waqαal

1 + waqαal

= 2(−1)nqαnwa

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl

1

1 + waqαal

= (−1)nqαnwaE(α)
n,q,w(x; a).

Hence, we get the following theorem.

Theorem 2.3. For a ∈ R+, w ∈ C and n ∈ N, we have

E
(α)
n,w−1,q−1(a− x; a) = (−1)nqαnwaE(α)

n,q,w(x; a).

From Definition 2.1 and some calculations, we get

E(α)
n,w,q(x; a) =

∫
Zp

way[ay + x]nqαdµ−1(y)

=

∫
Zp

way([x]qα + qαx[ay]qα)
ndµ−1(y)

=

∫
Zp

way
n∑

l=0

(
n

l

)
[x]n−l

qα qαxl[ay]lqαdµ−1(y)

=
n∑

l=0

(
n

l

)
[x]n−l

qα qαxl
∫
Zp

way[ay]lqαdµ−1(y)

=

n∑
l=0

(
n

l

)
[x]n−l

qα qαxlE
(α)
l,q,w(a)

=
(
[x]qα + qαxE(α)

q,w(a)
)n

.

Hence we get an identity as below:

E(α)
n,w,q(x; a) =

(
[x]qα + qαxE(α)

q,w(a)
)n

. (9)

Let m be a positive integer. From the equation (6), we get

[m]nqα

m−1∑
i=0

(−1)iwaiE
(α)
n,qαm,wm

(
ai+ x

m
; a

)

= [m]nqα

m−1∑
i=0

(−1)iwai × 2

(
1

1− qαm

)n n∑
l=0

(
n

l

)
(−1)lqαm

ai+x
m l 1

1 + wmαqαmal

=

(
1− qαm

1− qα

)n

× 2×
(

1

1− qαm

)n

×
n∑

l=0

(
n

l

)
(−1)lqαxl

1

1 + wmaqαmal

m−1∑
i=0

(−wa)iqαail
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= 2

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl

1

1 + wmaqαmal

1 + wamqαaml

1 + waqαal

= 2

(
1

1− qα

)n n∑
l=0

(
n

l

)
(−1)lqαxl

1

1 + waqαal

= E(α)
n,q,w(x; a).

Hence we get the distribution relation as below:

Theorem 2.4. For a ∈ R+, w ∈ C and n,m ∈ N, we have

[m]nqα

m−1∑
i=0

(−1)iwaiE
(α)
n,qαm,wm

(
ai+ x

m
; a

)
= E(α)

n,q,w(x; a).

Let g(x) = waxet[ax]qα . From properties of the fermionic p-adic integral (2),
we get

I−1(g1) + I−1(g) =

∫
Zp

wa(x+1)et[a(x+1)]qαdµ−1(x) +

∫
Zp

waxet[ax]qαdµ−1(x)

= wa
∞∑

n=0

∫
Zp

wax[ax+ a]
n
qαdµ−1(x)

tn

n!
+

∞∑
n=0

∫
Zp

wax[ax]
n
qαdµ−1(x)

tn

n!

=
∞∑

n=0

(
waE(α)

n,q,w(a; a) + E(α)
n,q,w(a)

) tn

n!

= 2.

By comparing the coefficients of tn

n! in both sides, we get an identity as below:

Theorem 2.5. For a ∈ R+, w ∈ C and n ∈ Z+, we have

waE(α)
n,q,w(a; a) + E(α)

n,q,w(a) =

{
2, if n = 0
0, if n > 0.

By Theorem 2.4 and the equation (9), we have the following corollary.

Corollary 2.6. For n ∈ Z+, we have

wa([a]qα + qαaE(α)
n,q,w(a))

n + E(α)
n,q,w(a) =

{
2, if n = 0
0, if n > 0,

with the usual convention of replacing (Ew(a))
n by En,w(a).

Let g(x) = waxe[ax]qα t. From g(x) and the left side of the equation (3), we
get

I−1(gn) + (−1)n−1I−1(g)

=

∫
Zp

wa(x+n)e[a(x+n)]tqαdµ−1(x) + (−1)n−1

∫
Zp

waxe[ax]
t
qαdµ−1(x)
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= wan

∫
Zp

wane[ax+an]tqαdµ−1(x) + (−1)n−1

∫
Zp

waxe[ax]
t
qαdµ−1(x)

= wan
∞∑

m=0

(∫
Zp

wax[ax+ an]
m
qαdµ−1(x)

)
tm

m!

+ (−1)n−1
∞∑

m=0

(∫
Zp

wax[ax]
m
qαdµ−1(x)

)
tm

m!

=
∞∑

m=0

(
wanE(α)

n,q,w(an; a) + (−1)n−1E(α)
n,q,w(a)

) tm

m!
. (10)

Also, from g(x) and the right hand side of equation of (3), we get the following :

2
n−1∑
l=0

(−1)n−1−lwale[al]
t
qα =

∞∑
m=0

(
2
n−1∑
l=0

(−1)n−1−lwal[al]mqα

)
tm

m!
. (11)

Hence by (10) , (11) and comparison of the coefficients of tm

m! in both hand
sides, we have the following theorem

Theorem 2.7. For a positive integer n, we have

wanE(α)
m,q,w(an; a) + (−1)n−1E(α)

m,q,w(a) = 2
n−1∑
l=0

(−1)n−1−lwal[al]mqα .

3. The analogue of the generalized q-w-Euler zeta function

The Euler zeta function is defined by ζE(s) =
∑∞

n=0
(−1)n−1

ns (see [3]). By
using the generalized q-w-Euler numbers and polynomials, the generalized Hur-
witz q-w-Euler zeta functions and the generalized q-w-Euler zeta functions are
defined. These functions interpolate the generalized q-w-Euler numbers and q-
w-Euler polynomials, respectively. In this section, let ω be the pN -th root of
unity.

Let F
(α)
w,q,a(t;x) =

∑∞
n=0 E

(α)
n,q,w(x; a)

tn

n! . Then by the k-th differentiation, we
get

dk

dtk
F (α)
w,q,a(t;x)

∣∣∣∣
t=0

= E
(α)
k,q,w(x; a). (12)

By using equation (12), we are now ready to define the concept of generalized
w-Euler zeta functions.

Definition 3.1. For s ∈ C, we define

ζ(α)q,w,a(s;x) = 2
∞∑

n=0

(−1)nwan

[x+ an]sqα
.
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Note that ζ
(α)
q,w,a(s;x) is a meromorphic function on C. Note that if w →

1, q → 1 and a = 1, then ζ
(α)
q,w,a(s;x) = ζ(x; s), which is the Hurwitz Euler

zeta function. The relation between ζ
(α)
q,w,a(s;x) and E

(α)
n,q,w(x; a) is given in the

following theorem.

Theorem 3.2. For k ∈ N, we have

ζ(α)q,w,a(−s;x) = E(α)
s,q,w(x; a).

Observe that the function ζ
(α)
q,w,a(s;x) interpolates E

(α)
n,q,w(x; a) at non-negative

integers. By using (12), we note that

dk

dtk
F (α)
w,q,a(t; 0)

∣∣∣∣
t=0

= E
(α)
k,q,w(0; a) = E

(α)
k,q,w(a). (13)

By using the above equation, we are now ready to define the notion of twisted
Hurwitz q-w-Euler zeta functions.

Definition 3.3. For s ∈ C, we define

ζ(α)q,w,a(s) = 2
∞∑

n=1

(−1)nwan

[an]
s
qα

.

Note that ζ
(α)
q,w,a(s) is a meromorphic function on C. Obserse that if w → 1

and q → 1, then ζ
(α)
q,w,a(s) = ζ(s) is the Hurwitz Euler zeta function. The relation

between ζ
(α)
q,w,a(s) and E

(α)
s,q,w is given in the following theorem.

Theorem 3.4. For k ∈ N, we have

ζ(α)q,w,a(−s) = E(α)
s,q,w(a).
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