DOI QR코드

DOI QR Code

Fabrication of Graphene Supercapacitors for Flexible Energy Storage

  • Habashi, M. Namdar (Department of Materials Engineering, University of Tabriz) ;
  • Asl, Shahab Khameneh (Department of Materials Engineering, University of Tabriz)
  • Received : 2016.12.24
  • Accepted : 2017.03.21
  • Published : 2017.05.27

Abstract

In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance ($C_m$) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ${\sim}10F\;cm^{-3}$ and that the cyclic stability is favorable over 1000 cycles.

Keywords

References

  1. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna and P. Simon, Nat. Nanotechnol., 5, 651 (2010). https://doi.org/10.1038/nnano.2010.162
  2. J. Chmiola, C. Largeot, P. L. Taberna, P. Simon and Y. Gogotsi, Science, 328, 480 (2010). https://doi.org/10.1126/science.1184126
  3. S. Patrice and Y. Gogotsi, Nature Mater., 7, 845 (2008). https://doi.org/10.1038/nmat2297
  4. L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu and Y. Luo, Nature Commun., 2, 381 (2011). https://doi.org/10.1038/ncomms1387
  5. S. Juan Manuel, E. Morallon and D. Cazorla-Amoros. Energy, 58, 519 (2013). https://doi.org/10.1016/j.energy.2013.04.077
  6. J. Zhang, J. Jiang, H. Lib and X. S. Zhao, Energy Environ. Sci., 4, 4009 (2011). https://doi.org/10.1039/c1ee01354h
  7. S. Yiqing, Q. Wu and G. Shi., Energy Environ. Sci., 4, 1113 (2011). https://doi.org/10.1039/c0ee00683a
  8. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  9. J. Miller, R. A. Outlaw and B. C. Holloway, Science, 329, 1637 (2010). https://doi.org/10.1126/science.1194372
  10. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  11. Y. Liua,Y. Lib, Y. Yanga, Y. Wenc and M. Wang, Scripta Mater., 68, 301 (2013). https://doi.org/10.1016/j.scriptamat.2012.10.048
  12. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/B917103G
  13. S. Alwarappan, C. Liu, A. Kumar and C. Li, J. Phys. Chem. C, 114, 12920 (2010). https://doi.org/10.1021/jp103273z
  14. X. Kanga, J. Wanga, H. Wua, I. A. Aksayc, J. Liua and Y. Lin, Biosens. Bioelectron., 25, 901 (2009). https://doi.org/10.1016/j.bios.2009.09.004
  15. K. R. Ratinac, W. Yang, J. J. Gooding, P. Thordarson and F. Braet, Electroanalysis, 23, 803 (2011). https://doi.org/10.1002/elan.201000545
  16. M. Chen, C. Park, Z. Meng, L. Zhu, J. Choi, T. Ghosh, I. Kim, S. Yang, M. Bae, F. Zhang and W. Oh, Fullerenes, Nanotubes and Carbon Nanostructures, 21, 525 (2013). https://doi.org/10.1080/1536383X.2011.643420
  17. M. Ates, D. Cinar, S. Caliskan, U. Gecgel, O. Uner, Y. Bayrak and I. Candan, Fullerenes, Nanotubes and Carbon Nanostructures, 24, 427 (2016). https://doi.org/10.1080/1536383X.2016.1174115
  18. J. Ma, Qi Guo, H. Gao and X. Qi, Fullerenes, Nanotubes and Carbon Nanostructures, 23, 477 (2015). https://doi.org/10.1080/1536383X.2013.865604
  19. Y. Yang, Fullerenes, Nanotubes and Carbon Nanostructures, 24, 243 (2016). https://doi.org/10.1080/1536383X.2016.1146708
  20. M. El-Kady, V. Strong1, S. Dubin and R. Kaner, Science, 335, 1326 (2012). https://doi.org/10.1126/science.1216744
  21. V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller and R.B. Kaner, ACS Nano, 6, 1395 (2012). https://doi.org/10.1021/nn204200w
  22. M. El-Kady and R. B. Kaner, ACS Nano, 8, 8725 (2014). https://doi.org/10.1021/nn504946k
  23. M. El-Kady and R. B. Kaner, Nature Commun., 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
  24. H. Tian, Y. Yang, D. Xie, Y. Cui, W. Mi, Y. Zhang and T. Ren, Sci. Rep., 4, 3598 (2014).
  25. H. Tian, C. Li, M. Mohammad, Y. Cui, W. Mi, Y. Yang, D. Xie and T. Ren, ACS Nano, 8, 5883 (2014). https://doi.org/10.1021/nn5009353
  26. H. Tian, Y. Shu, X. Wang, M. Mohammad, Z. Bie, Q. Xie, C. Li, W. Mi, Y. Yang and T. Ren, Sci. Rep., 5, 8603 (2015). https://doi.org/10.1038/srep08603
  27. H. Tian, Y. Shu, Y. Cui, W. Mi, Y Yang, D. Xie and T. Ren, Nanoscale, 6, 699 (2014). https://doi.org/10.1039/C3NR04521H
  28. K. Griffiths, C. Dale, J. Hedley, M. D. Kowal, R. B. Kaner and N. Keegan, Nanoscale, 6, 13613 (2014). https://doi.org/10.1039/C4NR04221B
  29. F. Wen, C. Hao, J. Xiang, L. Wang, H. Hou, Z. Su, W. Hu and Z. Liu, Carbon, 75, 236 (2014). https://doi.org/10.1016/j.carbon.2014.03.058
  30. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso and J. M. D. Tascon, Langmuir, 24, 10560 (2008). https://doi.org/10.1021/la801744a
  31. Z. Li, P. Liu, G. Yun, K. Shi, X. Lv, K. Li, J. Xing and B. Yang, Energy, 69, 266 (2014). https://doi.org/10.1016/j.energy.2014.03.003
  32. L. Chen., X. Zhang, H. Liang, M. Kong, Q. Guan, P. Chen, Z. Wu and S. Yu, ACS Nano, 6, 7092 (2012). https://doi.org/10.1021/nn302147s