DOI QR코드

DOI QR Code

Detection of Oxygen Species Generated from Ag2Se-Graphene Heterojunction Photocatalysts with Excellent Visible Light Driven Photocatalytic Performance

  • Meng, Ze-Da (Jiangsu Key Laboratory of Environmental Functional Materials, College of Chemistry and Bioengineering, Suzhou University of Science and Technology) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2016.10.13
  • Accepted : 2017.02.20
  • Published : 2017.05.27

Abstract

Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environments and can completely destroy various organic pollutants in waste water. In this study, we used graphene oxide modified $Ag_2Se$ nanoparticles to enhance photochemically generated oxygen (PGO) species activity. Surface area and pore volumes of the $Ag_2Se-graphene$ ($Ag_2Se-G$) samples showed catastrophic decrease due to deposition of $Ag_2Se$. The generation of reactive oxygen species was detected through the oxidation reaction of DPCI to DPCO. The photocurrent density and the PGO effect increase in the case of the use of modified graphene. The PGO effect of the graphene modified with $Ag_2Se$ composites increased significantly due to a synergetic effect between graphene and the $Ag_2Se$ nanoparticles. The photocatalytic activity of sample was evaluated by measuring the degradation of organic pollutants such as methylene blue (MB) and industrial dyes such as Texbrite BA-L (TBA) under visible light.

Keywords

References

  1. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98, 27 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
  2. P. Xu, T. Xu, J. Lu, S. M. Gao, N. S. Hosmane, B. B. Huang, Y. Dai, Y. B. Wang, Energy Environ. Sci., 3, 1128 (2010). https://doi.org/10.1039/c001940m
  3. S. Bagwasi, B. Z. Tian, J. L. Zhang and M. Nasir, Chem. Eng. J., 217, 108 (2013). https://doi.org/10.1016/j.cej.2012.11.080
  4. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98, 27 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
  5. H. Liu, X. N. Dong, X. C. Wang, C. C. Sun, J. Q. Li and Z. F. Zhu, Chem. Eng. J., 230, 279 (2013). https://doi.org/10.1016/j.cej.2013.06.092
  6. Z. D. Meng, M. M. Peng, L. Zhu and W. C. Oh, Appl. Catal. B: Environ., 113-114, 141 (2012). https://doi.org/10.1016/j.apcatb.2011.11.031
  7. J. F. W. Mosselmans, R. A. D. Pattrick, G. van der Laan, J. M. Charnock, D. J. Vaughan, C. M. B. Henderson and C. D. Garner, Phys. Chem. Minerals, 22, 311 (1995). https://doi.org/10.1007/BF00202771
  8. N. Nakashima, T. Ishii, M. Shirakusa, T. Nakanishi, H. Murakami and T. Sagara, Chem. Eur. J, 7, 1766 (2001). https://doi.org/10.1002/1521-3765(20010417)7:8<1766::AID-CHEM17660>3.0.CO;2-F
  9. J. J. Zhao, B. T. Jiang, S. Y. Zhang, H. L. Niu, B. K. Jin and Y. P. Tian, Sci. China Ser. B, Chem., 52, 2213 (2009). https://doi.org/10.1007/s11426-009-0143-7
  10. H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 27, 85 (2004). https://doi.org/10.1007/BF02708491
  11. V. Buschmann, G. V. Tendeloo, Ph. Monnoyer and J. B. Nagy, Langmuir, 14, 1528 (1998). https://doi.org/10.1021/la9713210
  12. J. Wang, Y. W. Guo, B. Liu, X. D. Jin, L. J. Liu, R. Xu, Y. M. Kong and B. X. Wang, Ultrason. Sonochem., 18, 177 (2011). https://doi.org/10.1016/j.ultsonch.2010.05.002
  13. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  14. A. Tubtimtae, M. W. Lee, G. J. Wang, J. Power Sources, 196, 6603 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.074
  15. J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun, Adv. Funct. Mater., 20, 4175 (2010). https://doi.org/10.1002/adfm.201001391
  16. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  17. Z. D. Meng, T. Ghosh, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, J Mater. Chem., 22, 16127 (2012). https://doi.org/10.1039/c2jm32344c
  18. Y. Cui, G. Chen, J. Ren, M. Shao, Y. Xie and Y. Qian, J. Solid State Chem., 172, 17 (2003). https://doi.org/10.1016/S0022-4596(02)00040-3
  19. K. Nagasuna, T. Akita, M. Fujishima and H. Tada, Langmuir, 27, 7294 (2011). https://doi.org/10.1021/la200587s
  20. M. D. Donohue and G. L. Aranovich, Fluid Phase Equilib., 158-160, 557 (1999). https://doi.org/10.1016/S0378-3812(99)00074-6
  21. H. I. Kim, G. H. Moon, D. M. Satoca, Y. Park and W. Y. Choi, J. Phys. Chem. C, 116, 1535 (2012). https://doi.org/10.1021/jp209035e
  22. Z. D. Meng, K. Zhang and W. C. Oh, Korean J. Mater. Res., 20, 228 (2010). https://doi.org/10.3740/MRSK.2010.20.4.228
  23. R. Azumi, K. Kakiuchi and M. Matsumoto, Bull. Chem. Soc. Japan, 76, 1561 (2003). https://doi.org/10.1246/bcsj.76.1561
  24. H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans, P. Heremans and J. Genoe, Adv. Funct. Mater., 18, 3686 (2008). https://doi.org/10.1002/adfm.200800815
  25. D. Ma, M. Zhang, G. Xi, J. Zhang and Y. Qian, Inorg. Chem., 45, 4845 (2006). https://doi.org/10.1021/ic060126i
  26. H. Q. Cao, Y. J. Xiao, Y. X. Lu, J. F. Yin, B. J. Li, S. S. Wu and X. M. Wu, Nano. Res., 12, 863 (2010).