DOI QR코드

DOI QR Code

Characteristics of Basalt Materials Derived from Recycling Steel Industry Slags

철강산업 슬래그를 이용하여 제조한 바잘트 소재의 특성

  • Jung, Woo-Gwang (School of Materials Science and Engineering, Kookmin University) ;
  • Back, Gu-Seul (Department of Materials Science and Engineering, Graduate School of Kookmin University) ;
  • Yoon, Mi-Jung (Dongdo Basalt Industry Co. Ltd.) ;
  • Lee, Jee-Wook (School of Materials Science and Engineering, Kookmin University)
  • 정우광 (국민대학교 신소재공학부) ;
  • 백구슬 (국민대학교 대학원 신소재공학과) ;
  • 윤미정 (동도바잘트산업(주)) ;
  • 이지욱 (국민대학교 신소재공학부)
  • Received : 2017.03.08
  • Accepted : 2017.03.31
  • Published : 2017.05.27

Abstract

In this study, Fe-Ni slag, converter slag and dephosphorization slag generated from the steel industry, and fly ash or bottom ash from a power plant, were mixed at an appropriate mixing ratio and melted in a melting furnace in a mass-production process for glass ceramics. Then, glass-ceramic products, having a basalt composition with $SiO_2$, $Al_2O_3$, CaO, MgO, and $Fe_2O_3$ components, were fabricated through casting and heat treatment process. Comparison was made of the samples before and after the modification of the process conditions. Glass-ceramic samples before and after the process modification were similar in chemical composition, but $Al_2O_3$ and $Na_2O$ contents were slightly higher in the samples before the modification. Before and after the process modification, it was confirmed that the sample had a melting temperature below $1250^{\circ}C$, and that pyroxene and diopside are the primary phases of the product. The crystallization temperature in the sample after modification was found to be higher than that in the sample before modification. The activation energy for crystallization was evaluated and found to be 467 kJ/mol for the sample before the process modification, and 337 kJ/mol for the sample after the process modification. The degree of crystallinity was evaluated and found to be 82 % before the process change and 87 % after the process change. Mechanical properties such as compressive strength and bending strength were evaluated and found to be excellent for the sample after process modification. In conclusion, the samples after the process modification were evaluated and found to have superior characteristics compared to those before the modification.

Keywords

References

  1. P. E. Tsakiridis, G. D. Papadimitriou, S. Tsivilis and C. Koroneos, J. Hazard. Mater. 152, 805 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.093
  2. S. W. Choi, V. Kim, W. S. Chang and E. Y. Kim, J. Concrete 19, 28 (2007).
  3. K. Freidin and E. Erell, Cement Concrete Comp., 17, 289 (1995). https://doi.org/10.1016/0958-9465(95)00017-7
  4. M. Heikal, I. Aiad and I. M. Helmy, Cement Concrete Res., 32, 1805 (2002). https://doi.org/10.1016/S0008-8846(02)00867-0
  5. S. Kourounis, S. Tsivilis, P. E. Tsakiridis, G. D. Papadimitriou and Z. Tsibouki, Cement Concrete Res., 37, 815 (2007). https://doi.org/10.1016/j.cemconres.2007.03.008
  6. P. J. Nel and A. Tauber, J. South African Inst. Mining Metall., (1970) July, 366.
  7. M. L. Ovecoglu, J. Euro. Ceram. Soc., 18, 161 (1998). https://doi.org/10.1016/S0955-2219(97)00094-0
  8. A. A. Francis, J. Am. Ceram. Soc., 88, 1859 (2005). https://doi.org/10.1111/j.1551-2916.2005.00354.x
  9. M. V. Folgueras, P. N. de Oliveira and O. E. Alarcon, Am. Ceram. Soc. Bull., (2005) Nov., 9201.
  10. A. A. Francis, Mater. Res. Bull., 41, 1146 (2006). https://doi.org/10.1016/j.materresbull.2005.11.002
  11. Z. Wang, W. Ni, Y. Jia, L. Zhu and X. Huang, J. Non-Crys. Solids, 356, 1554 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.063
  12. G. A. Khater, Ceram. Int., 37, 2193 (2011). https://doi.org/10.1016/j.ceramint.2011.03.011
  13. K. Zhang, J. Liu, W. Liu and J. Yang, Chemosphere, 85, 689 (2011). https://doi.org/10.1016/j.chemosphere.2011.07.005
  14. F. He, Y. Fang, J. Xie and J. Xie, Mater. Des., 42, 198 (2012). https://doi.org/10.1016/j.matdes.2012.05.033
  15. Y. Wang, Q. Jiang, G. Luo, W. Yu and Y. Ban, J. Metall., 954021 (2012).
  16. Z. Yang, Q. Lin, J. Xia, Y. He, G. Liao and Y. Ke, J. Alloys Compd., 574, 354 (2013). https://doi.org/10.1016/j.jallcom.2013.05.091
  17. Z. Yang, Q. Lin, S. Lu, Y. He, G. Liao and Y. Ke, Ceram. Int., 40, 7297 (2014). https://doi.org/10.1016/j.ceramint.2013.12.071
  18. A. Kamusheva, E. M. A. Hamzawy and A. Karamanov, J. Chem. Tech. Metall., 50, 512 (2015).
  19. E. Mohamed, P. Shahsavari, B. Eftekhari-Yekta and V. K. Marghussian, Trans. Ind. Ceram. Soc., 74, 1 (2015). https://doi.org/10.1080/0371750X.2014.962186
  20. S.-H. Chang and H.-J. Jung, J. Korean Ceram. Soc., 17, 20 (1980) (in Korean).
  21. S.-H. Chang and H.-J. Jung, J. Korean Ceram. Soc., 17, 27 (1980) (in Korean).
  22. G.-S. Back, H. S. Park, S. M. Seo and W.-G. Jung, Met. Mater. Int., 21, 1061 (2015). https://doi.org/10.1007/s12540-015-5288-7
  23. G.-S. Back, M.-J. Yoon and W.-G. Jung, Met. Mater. Int., (2017) (in press).
  24. M. Rezvani, B. Eftekhari-Yekta, M. Solati-Hashjin and V. K. Marghussian, Ceram. Int., 31, 75 (2005). https://doi.org/10.1016/j.ceramint.2004.03.037
  25. S. M. Wang, Environ. Sci. Technol., 44, 4816 (2010). https://doi.org/10.1021/es1003268
  26. X. Ren, W. Zhang, Y. Zhang, P. Zhang and J. Liu, Trans. Nonferrous Met. Soc. China, 25, 137 (2015). https://doi.org/10.1016/S1003-6326(15)63588-9
  27. ASTM D1857/D1857M, DIN 51730:1998
  28. H. J. Jung, "Controlled Crystallization and Properties of Glasses in the System $CaO-MgO-Al_{2}O_{3}-SiO_{2}$" Ph.D. Thesis, Leed University, United Kingdom (1976).
  29. D. U. Tulyaganov, XIX Proceeding of the International Congress on Glass, Vol. 2 Extended Abstract, Edinburgh, Scotland, 1-6 July, 198 (2001).
  30. I. L. Denry and J. A. Holloway, J. Biomed. Mat. Res., 63, 48 (2002). https://doi.org/10.1002/jbm.10085
  31. H. E. Kissinger, J. Res. Natl. Bur. Stand., (US) 57, 217 (1956). https://doi.org/10.6028/jres.057.026
  32. M. Ma, W. Ni, Y. Wang, X. Li, F. Liu and Z. Wang, J. Chin. Ceram. Soc., 37, 609 (2009).
  33. M. Rezvani, B. Eftekhari-Yekta, M. Solati-Hashjin and V. K. Marghussian, Ceram. Int., 31, 75 (2005). https://doi.org/10.1016/j.ceramint.2004.03.037
  34. J. E. Field, J. Appl. Phys. 12, 23 (1941). (http://dx.doi.org/10.1063/1.1712848)
  35. S. M. Ohlberg and D. W. Strickler, J. Am. Ceram. Soc., 45, 170 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11114.x