DOI QR코드

DOI QR Code

Hydrogen Production Systems through Water Electrolysis

물 전기분해에 의한 수소제조 기술

  • 황갑진 (호서대학교 일반대학원 그린에너지공학과) ;
  • 최호상 (경일대학교 화학공학과)
  • Received : 2017.12.08
  • Accepted : 2017.12.21
  • Published : 2017.12.31

Abstract

Hydrogen is one of energy storage systems, which could be transfer from electric energy to chemical energy or from chemical energy to electric energy, and is as an energy carrier. Water electrolysis is being investigating as one of the hydrogen production methods. Recently, water electrolysis receive attention for the element technology in PTG (power to gas) and PTL (power to liquid) system. In this paper, it was explained the principle and type for the water electrolysis, and recent research review for the alkaline water electrolysis.

수소는 산업용 전력생산, 자동차용 연료 등을 위한 대체가능한 에너지 담체로 인식되고 있다. 미래 저탄소 에너지 시스템에서 에너지 저장은 전력 수요에 유연하지 않거나 간헐적인 공급의 균형을 이루기 위한 중추적인 역할을 담당할 수 있을 것이다. 수소는 에너지 담체로서 전기에너지를 화학에너지로, 화학에너지를 전기에너지로 변환할 수 있는 에너지 저장 방법 중의 하나이다. 수소제조 방법 중에서, 특히, 물의 전기분해를 이용한 방법은 신재생 에너지원과의 접목을 고려할 때 가장 효율적이고 실용적인 방법으로 여겨지고 있다. 물 전기분해 수소제조 기술은 전기를 이용하여 수소를 물로부터 직접 제조하는 방법으로, 화석연료 이용 제조방법과 비교하여 수소를 제조할 때 지구환경 오염물질인 이산화탄소의 배출이 없다. 수소제조 방법 중의 하나인 물 전기분해의 원리와 물 전기분해의 종류인 알칼리 수전해(AWE, alkaline water electrolysis), 고분자 전해질막 수전해(PEMWE, polymer electrolyte membrane water electrolysis), 고온 수증기 전기분해(HTSE, high temperature steam electrolysis)에 대하여 분석하고자 하였다. 물 전기분해는 수소제조 방법의 하나로 연구가 진행되고 있으며, 최근에는 PTG (power to gas)와 PTL (power to liquid) 시스템의 요소기술로도 주목을 받고 있다. 본 총설에서는 물 전기분해에 대한 원리와 종류, 특히 알칼리 수전해에 대한 최근 연구동향에 대해 설명하였다.

Keywords

References

  1. I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis : A review", Renewable and Sustainable Energy Reviews, 81, 1690 (2018). https://doi.org/10.1016/j.rser.2017.05.258
  2. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, "Future cost and performance of water electrolysis: An expert elicitation study", Int. J. Hydrogen Energy, In press.
  3. X. Wenguo and C. Yingying, "Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors", Energy Fuels, 21, 2272 (2007). https://doi.org/10.1021/ef060517h
  4. S. Ahmed and M. Krumpelt. "Hydrogen from hydrocarbon fuels for fuel cells", Int. J. Hydrogen Energy, 26, 291 (2001). https://doi.org/10.1016/S0360-3199(00)00097-5
  5. M. Ni, D. Y. C. Leung, M. K. H. Leung, and K. Sumathy, "An overview of hydrogen production from biomass", Fuel Process Technol., 87, 461 (2006). https://doi.org/10.1016/j.fuproc.2005.11.003
  6. G.-J. Hwang, K.-S. Kang, H.-J. Han, and J.-W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans. of the Korean Hydrogen and New Energy Society, 18, 95 (2007).
  7. FCH JU, "Commercialisation of energy storage in Europe", Final report (2015).
  8. Deutsche Energie-Agentur GmbH (dena), "Webpage: strategieplattform power to gas", http://www.powertogas.info/ (2016).
  9. A. Buttler and H. Spliethoff, "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and powerto-liquids: A review", Renewable and Sustainable Energy Reviews, in press.
  10. J. W. Kim, G. J. Hwang, H. S. Choi, and Y. G. Jung, "Hydroegn Energy, Chapter 2. Water elctrolysis", Ajin Press (2005).
  11. G.-J. Hwang, H.-S. Choi, A.-S. Kang, J.-W. Kim, and K. Onuki, "Thermochemical water-splitting IS(iodine-sulfur) process for hydrogen production", J. Korean Ind. Eng. Chem., 13, 600 (2002).
  12. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis", Int. J. Hydrogen Energy, 38, 4901 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
  13. B. Lee, J. Heo. N. Choi, C. Moon, S. Moon, and H. Lim, "Economic evaluation with uncertainly analysis using a monte-carlo simulation method for hydrogen production form high pressure PEM water electrolysis in Korea", Int. J. Hydrogen Energy, 42, 24612 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.033
  14. Q. Feng, X. Yuan. G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, "A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies", J. Power Sour., 366, 33 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.006
  15. C. Graves, S. D. Ebbesen, and M. Mogensen, "Co-electrolysis of $CO_2$ and $H_2O$ in solid oxide cells: performance and durability", Solid State Ion., 192, 398 (2011). https://doi.org/10.1016/j.ssi.2010.06.014
  16. S. D. Ebbesen, J. Hogh, K. A. Nielsen, J. U. Nielsen, and M. Mogensen, "Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis", Int. J. Hydrogen Energy, 36, 7363 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.130
  17. G. Botta, M. Solimeo, P. Leone, and P. V. Aravind, "Thermodynamic analysis of coupling a SOEC in Co-electrolysis mode with the dimethyl ether synthesis", Fuel Cells, 15, 669 (2015). https://doi.org/10.1002/fuce.201500016
  18. X. L. Yan and R. Hino, "Nuclear hydrogen production handbook", Boca Raton, CRC Press (2011).
  19. EMK Co., "Final report in Daegyeong institute for regional program evaluation (DGIRPE) through the Leading Industry Development for Economic Region" (2015).
  20. H. Wendt and H. Hofmann, "Ceramic diaphragms for advanced alkaline water electrolysis", J. Appl. Electrochem., 19, 605 (1989). https://doi.org/10.1007/BF01022121
  21. V. Rosa, "New materials for water electrolysis diaphragms", Int. J. Hydrogen Energy, 20, 697 (1995). https://doi.org/10.1016/0360-3199(94)00119-K
  22. W. Hu, "A novel cathode for alkaline water electrolysis", Int. J. Hydrogen Energy, 22, 621 (1997).
  23. G. J. Hwang, S.-G. Lim, S.-Y. Bong, C.-H. Ryu, and H.-S. Choi, "Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis", Korean J. Chem. Eng., 32, 1896 (2015). https://doi.org/10.1007/s11814-015-0005-2
  24. J. Qiao, J. Fu, R. Lin, J. Ma, and J. Liu, "Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability", Polymer, 51, 4850 (2010). https://doi.org/10.1016/j.polymer.2010.08.018
  25. Y.-C. Cao, X. Wu, and K. Scott, "A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalyst", Int. J. Hydrogen Energy, 37, 9524 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.116
  26. X. Wu and K. Scott, "A polymethacrylate-based quaternary ammonium OH- ionomer binder for non-precious metal alkaline anion exchange membrane water electrolysers", J. Power Sources, 214, 124 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.069
  27. E. Park, C. B. Capuano, K. E. Ayers, and C. Bae, "Chemically durable polymer electrolytes for solid-state alkaline water electrolysis", J. Power Sources, 375, 367 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.090
  28. L. A. Diaz, R. E. Coppola, G. C. Abuin, R. Escudero-Cid, D. Herranz, and P. Ocon, "Alkali-doped polyvinyl alcohol-polybenzimidazole membranes for alkaline water electrolysis", J. Membr. Sci., 535, 45 (2017). https://doi.org/10.1016/j.memsci.2017.04.021
  29. D. Aili, M. K. Hansen, J. W. Andreasen, J. Zhang, J. O. Jensen, N. J. Bjerrum, and Q. Li, "Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis", J. Membr. Sci., 493, 589 (2015). https://doi.org/10.1016/j.memsci.2015.06.057
  30. G. J. Hwang, B.-M. Gil, and C.-H. Ryu, "Preparation of the electrode using $NiFe_2O_4$ powder for the alkaline water electrolysis", J. Ind. Eng. Chem., 48, 242 (2017). https://doi.org/10.1016/j.jiec.2017.01.011
  31. M. P. Marceta Kaninski, M. M. Seovic, S. M. Miulovic, D. L. Zugic, G. S. Tasic, and D. P. Saponjic, "Cobalt-chrome activation of the nickel electrodes for the HER in alkaline water electrolysis-Part II", Int. J. Hydrogen Energy, 38, 1758 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.117
  32. D. S. P. Cardoso, L. Amaral, D. M. F Santos, B. Sljukic, C. A. C. Sequeira, D. Maccio, and A. Saccone, "Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys", Int. J. Hydrogen Energy, 40, 4295 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.174
  33. R. Solmaz, A. Doner, and G. Kardas, "The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution", Int. J. Hydrogen Energy, 34, 2089 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.007
  34. R. Solmaz, "Electrochemical preparation and characterization of C/Ni-NiIr composite electrodes as novel cathode materials for alkaline water electrolysis", Int. J. Hydrogen Energy, 38, 2251 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.101
  35. G. Tasic, S. Maslovara, D. Zugic, A. Maksic, and M. Marceta Kaninski, "Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis", Int. J. Hydrogen Energy, 36, 11588 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.081
  36. L. Wu, Y. He, T. Lei, B. Nan, N. Xu, J. Zou, B. Huang, and D. T. Liu, "Characterization of the porous Ni3Al-Mo electrode during hydrogen generation from alkaline water electrolysis", Energy, 63, 216 (2013). https://doi.org/10.1016/j.energy.2013.10.029
  37. C. Kjartansdottir, M. Caspersen, S. Egelund, and P. Moller, "Electrochemical investigation of surface area effects on PVD Al-Ni as electrocatalyst for alkaline water electrolysis", Electrochimica Acta, 142, 324 (2014). https://doi.org/10.1016/j.electacta.2014.07.061
  38. V. Nikolic, S. Maslovara, G. Tasic, T. Brdaric, P. Lausevic, B. Radak, and M. Marceta Kaninski, "Kinetics of hydrogen evolution reaction in alkaline electrolysis on a Ni cathode in the presence of Ni-Co-Mo based ionic activators", Applied Catalysis B: Environmental, 179, 88 (2015). https://doi.org/10.1016/j.apcatb.2015.05.012
  39. A. Mauer, D. Kirk, and S. Thorpe, "The role of iron in the prevention of nickel electrode deactivation in alkaline electrolysis", Electrochimica Acta, 52, 3505 (2007). https://doi.org/10.1016/j.electacta.2006.10.037