DOI QR코드

DOI QR Code

CRISPR system for genome engineering: the application for autophagy study

  • Cui, Jianzhou (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Chew, Shirley Jia Li (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Shi, Yin (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Gong, Zhiyuan (Department of Biological Sciences, National University of Singapore) ;
  • Shen, Han-Ming (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore)
  • Received : 2017.03.13
  • Published : 2017.05.31

Abstract

CRISPR/Cas9 is the latest tool introduced in the field of genome engineering and is so far the best genome-editing tool as compared to its precedents such as, meganucleases, zinc finger nucleases (ZFNs) and transcription activator-like effectors (TALENs). The simple design and assembly of the CRISPR/Cas9 system makes genome editing easy to perform as it uses small guide RNAs that correspond to their DNA targets for high efficiency editing. This has helped open the doors for multiplexible genome targeting in many species that were intractable using old genetic perturbation techniques. Currently, The CRISPR system is revolutionizing the way biological researches are conducted and paves a bright future not only in research but also in medicine and biotechnology. In this review, we evaluated the history, types and structure, the mechanism of action of CRISPR/Cas System. In particular, we focused on the application of this powerful tool in autophagy research.

Keywords

References

  1. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 https://doi.org/10.1126/science.1172447
  2. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
  3. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 https://doi.org/10.1016/j.cell.2015.09.038
  4. Niu JW, Zhang B and Chen H (2014) Applications of TALENs and CRISPR/Cas9 in Human Cells and Their Potentials for Gene Therapy. Mol Biotechnol 56, 681-688 https://doi.org/10.1007/s12033-014-9771-z
  5. Stranneheim H and Lundeberg J (2012) Stepping stones in DNA sequencing. Biotechnol J 7, 1063-1073 https://doi.org/10.1002/biot.201200153
  6. Sander JD, Dahlborg EJ, Goodwin MJ et al (2011) Selection-free zinc-finger-nuclease engineering by contextdependent assembly (CoDA). Nat Methods 8, 67-69 https://doi.org/10.1038/nmeth.1542
  7. Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31, 1137-1142 https://doi.org/10.1038/nbt.2726
  8. Uhde-Stone C, Gor N, Chin T, Huang J and Lu B (2013) A do-it-yourself protocol for simple transcription activator-like effector assembly. Biol Proced Online 15, 3 https://doi.org/10.1186/1480-9222-15-3
  9. Mizushima N (2007) Autophagy: process and function. Genes Dev 21, 2861-2873 https://doi.org/10.1101/gad.1599207
  10. Qu X, Yu J, Bhagat G et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112, 1809-1820 https://doi.org/10.1172/JCI20039
  11. Yue Z, Jin S, Yang C, Levine AJ and Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100, 15077-15082 https://doi.org/10.1073/pnas.2436255100
  12. Komatsu M, Waguri S, Ueno T et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425-434 https://doi.org/10.1083/jcb.200412022
  13. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 https://doi.org/10.1038/nature04724
  14. Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036 https://doi.org/10.1038/nature03029
  15. Qu X, Zou Z, Sun Q et al (2007) Autophagy genedependent clearance of apoptotic cells during embryonic development. Cell 128, 931-946 https://doi.org/10.1016/j.cell.2006.12.044
  16. O’Prey J, Sakamaki J, Baudot A et al (2017) Application of CRISPR/Cas9 to Autophagy Research. Methods Enzymol 588, 79-108
  17. Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433 https://doi.org/10.1128/jb.169.12.5429-5433.1987
  18. Barrangou R and van der Oost J (2012) CRISPR-Cas systems: RNA-mediated adaptive immunity in bacteria and archaea. Springer Science & Business Media 1-31
  19. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182 https://doi.org/10.1007/s00239-004-0046-3
  20. Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71 https://doi.org/10.1038/nature09523
  21. Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 https://doi.org/10.1038/nature09886
  22. Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586 https://doi.org/10.1073/pnas.1208507109
  23. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
  24. Xie S, Shen B, Zhang C, Huang X and Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9, e100448 https://doi.org/10.1371/journal.pone.0100448
  25. Horvath P and Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170 https://doi.org/10.1126/science.1179555
  26. Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845 https://doi.org/10.1126/science.1165771
  27. Hale CR, Zhao P, Olson S et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956 https://doi.org/10.1016/j.cell.2009.07.040
  28. Barrangou R and Marraffini LA (2014) CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 54, 234-244 https://doi.org/10.1016/j.molcel.2014.03.011
  29. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F (2013) Genome engineering using the CRISPRCas9 system. Nat Protoc 8, 2281-2308 https://doi.org/10.1038/nprot.2013.143
  30. Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 https://doi.org/10.1126/science.1247997
  31. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 https://doi.org/10.1016/j.cell.2014.02.001
  32. Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 https://doi.org/10.1016/j.cell.2014.05.010
  33. Jiang F and Doudna JA (2017) CRISPR-Cas9 Structures and Mechanisms. Ann Rev Biophys 46, 1 https://doi.org/10.1146/annurev-biophys-070816-033555
  34. Shen B, Brown KM, Lee TD and Sibley LD (2014) Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5, e01114-01114
  35. Sternberg SH, Redding S, Jinek M, Greene EC and Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67 https://doi.org/10.1038/nature13011
  36. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 https://doi.org/10.1038/nature14592
  37. Yamano T, Nishimasu H, Zetsche B et al (2016) Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell 165, 949-962 https://doi.org/10.1016/j.cell.2016.04.003
  38. Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736 https://doi.org/10.1038/nrmicro3569
  39. Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239 https://doi.org/10.1038/nbt.2508
  40. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  41. Xu T, Li Y, Van Nostrand JD, He Z and Zhou J (2014) Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80, 1544-1552 https://doi.org/10.1128/AEM.03786-13
  42. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918 https://doi.org/10.1016/j.cell.2013.04.025
  43. Ran FA, Hsu PD, Lin CY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389 https://doi.org/10.1016/j.cell.2013.08.021
  44. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183 https://doi.org/10.1016/j.cell.2013.02.022
  45. Schwank G, Koo BK, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658 https://doi.org/10.1016/j.stem.2013.11.002
  46. Smith C, Gore A, Yan W et al (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15, 12-13 https://doi.org/10.1016/j.stem.2014.06.011
  47. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH and Reddy TE (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6, 6244 https://doi.org/10.1038/ncomms7244
  48. Pan Y, Xiao L, Li AS et al (2013) Biological and biomedical applications of engineered nucleases. Mol Biotechnol 55, 54-62 https://doi.org/10.1007/s12033-012-9613-9
  49. Liu R, Paxton WA, Choe S et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367-377 https://doi.org/10.1016/S0092-8674(00)80110-5
  50. Lombardo A, Genovese P, Beausejour CM et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25, 1298-1306 https://doi.org/10.1038/nbt1353
  51. Musunuru K, Pirruccello JP, Do R et al (2010) Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med 363, 2220-2227 https://doi.org/10.1056/NEJMoa1002926
  52. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA and Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12, 393-394 https://doi.org/10.1016/j.stem.2013.03.006
  53. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
  54. Sander JD and Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355 https://doi.org/10.1038/nbt.2842
  55. Mout R, Ray M, Yesilbag Tonga G et al (2017) Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano 11, 2452-2458 https://doi.org/10.1021/acsnano.6b07600
  56. Jiang C, Mei M, Li B et al (2017) A non-viral CRISPR/Cas9 delivery system for therapeutic gene targeting in vivo. Cell Res 27, 440-443 https://doi.org/10.1038/cr.2017.16
  57. Cho SW, Lee J, Carroll D, Kim JS and Lee J (2013) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195, 1177-1180 https://doi.org/10.1534/genetics.113.155853
  58. Jiang W, Zhou H, Bi H, Fromm M, Yang B and Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41, e188 https://doi.org/10.1093/nar/gkt780
  59. Jackson AL and Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9, 57-67 https://doi.org/10.1038/nrd3010
  60. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832 https://doi.org/10.1038/nbt.2647
  61. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX and Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 https://doi.org/10.1126/science.aad5227
  62. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495 https://doi.org/10.1038/nature16526
  63. Wu YT, Tan HL, Shui G et al (2010) Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase. J Biol Chem 285, 10850-10861 https://doi.org/10.1074/jbc.M109.080796
  64. Yang YP, Hu LF, Zheng HF et al (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34, 625-635 https://doi.org/10.1038/aps.2013.5
  65. Yuan N, Song L, Zhang S et al (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100, 345-356 https://doi.org/10.3324/haematol.2014.113324
  66. Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ and Thorburn A (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8, 200-212 https://doi.org/10.4161/auto.8.2.18554
  67. Liu Y, Lin J, Zhang M et al (2016) PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis. Dev Biol 419, 357-372 https://doi.org/10.1016/j.ydbio.2016.08.028
  68. Sasaki T, Lian S, Khan A et al (2017) Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy 13, 386-403 https://doi.org/10.1080/15548627.2016.1256934
  69. Padman BS, Nguyen TN and Lazarou M (2017) Autophagosome formation and cargo sequestration in the absence of LC3/GABARAPs. Autophagy 13, 1-3 https://doi.org/10.1080/15548627.2016.1255382
  70. Horne DJ, Graustein AD, Shah JA et al (2016) Human ULK1 Variation and Susceptibility to Mycobacterium tuberculosis Infection. J Infect Dis 214, 1260-1267 https://doi.org/10.1093/infdis/jiw347
  71. Wang J, Fang Y, Yan L et al (2016) Erythroleukemia cells acquire an alternative mitophagy capability. Sci Rep 6, 24641 https://doi.org/10.1038/srep24641
  72. Kim NY, Han BI and Lee M (2016) Cytoprotective role of autophagy against BH3 mimetic gossypol in ATG5 knockout cells generated by CRISPR-Cas9 endonuclease. Cancer Lett 370, 19-26 https://doi.org/10.1016/j.canlet.2015.10.008
  73. Cao Y, Cai J, Li X, Yuan N and Zhang S (2016) Autophagy governs erythroid differentiation both in vitro and in vivo. Hematology 21, 225-233 https://doi.org/10.1179/1607845415Y.0000000027
  74. Ohshima J, Lee Y, Sasai M et al (2014) Role of mouse and human autophagy proteins in IFN-gamma-induced cell-autonomous responses against Toxoplasma gondii. J Immunol 192, 3328-3335 https://doi.org/10.4049/jimmunol.1302822
  75. DeJesus R, Moretti F, McAllister G et al (2016) Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. 5. Elife e17290
  76. Hatoum-Aslan A, Maniv I, Samai P and Marraffini LA (2014) Genetic Characterization of Antiplasmid Immunity through a Type III-A CRISPR-Cas System. J Bacteriol 196, 310-317 https://doi.org/10.1128/JB.01130-13
  77. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838 https://doi.org/10.1038/nbt.2675
  78. Cho SW, Kim S, Kim JM and Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 https://doi.org/10.1038/nbt.2507
  79. Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23, 465-472 https://doi.org/10.1038/cr.2013.45
  80. Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23, 1233 https://doi.org/10.1038/cr.2013.123
  81. Jiang W, Maniv I, Arain F, Wang Y, Levin BR and Marraffini LA (2013) Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids. PLoS Genet 9, e1003844 https://doi.org/10.1371/journal.pgen.1003844
  82. Xie K and Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6, 1975-1983 https://doi.org/10.1093/mp/sst119
  83. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31, 686-688 https://doi.org/10.1038/nbt.2650
  84. Fodor E, Sigmond T, Ari E et al (2017) Methods to Study Autophagy in Zebrafish. Methods Enzymol 588, 467-496
  85. Gratz SJ, Cummings AM, Nguyen JN et al (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029-1035 https://doi.org/10.1534/genetics.113.152710
  86. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM and Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10, 741-743 https://doi.org/10.1038/nmeth.2532
  87. Waaijers S, Portegijs V, Kerver J et al (2013) CRISPR/Cas9-Targeted Mutagenesis in Caenorhabditis elegans. Genetics 195, 1187-1191 https://doi.org/10.1534/genetics.113.156299
  88. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH and Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51, 835-843 https://doi.org/10.1002/dvg.22720
  89. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J and Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41, 4336-4343 https://doi.org/10.1093/nar/gkt135
  90. Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31, 688-691 https://doi.org/10.1038/nbt.2654
  91. Nekrasov V, Staskawicz B, Weigel D, Jones JD and Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 691-693 https://doi.org/10.1038/nbt.2655
  92. Dickinson DJ, Ward JD, Reiner DJ and Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10, 1028-1034 https://doi.org/10.1038/nmeth.2641
  93. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F and Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41, 7429-7437 https://doi.org/10.1093/nar/gkt520
  94. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPRmediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451 https://doi.org/10.1016/j.cell.2013.06.044
  95. Suzuki H, Kaizuka T, Mizushima N and Noda NN (2015) Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22, 572-580 https://doi.org/10.1038/nsmb.3036
  96. Tang Y, Li J, Li F et al (2015) Autophagy protects intestinal epithelial Cells against Deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radi Biol Med 89, 944-951 https://doi.org/10.1016/j.freeradbiomed.2015.09.012
  97. Allavena G, Boyd C, Oo KS, Maellaro E, Zhivotovsky B and Kaminskyy VO (2016) Suppressed translation and ULK1 degradation as potential mechanisms of autophagy limitation under prolonged starvation. Autophagy 12, 2085-2097 https://doi.org/10.1080/15548627.2016.1226733
  98. Kaizuka T and Mizushima N (2016) Atg13 is essential for autophagy and cardiac development in mice. Mol Cell Biol 36, 585-595 https://doi.org/10.1128/MCB.01005-15
  99. Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H and Mizushima N (2016) The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036-1041 https://doi.org/10.1126/science.aaf6136
  100. Stavoe AK, Hill SE, Hall DH and Colon-Ramos DA (2016) KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Dev Cell 38, 171-185 https://doi.org/10.1016/j.devcel.2016.06.012
  101. Fulcher LJ, Macartney T, Bozatzi P, Hornberger A, Rojas-Fernandez A and Sapkota GP (2016) An affinitydirected protein missile system for targeted proteolysis. Open Biol 6, 160255 https://doi.org/10.1098/rsob.160255
  102. Tan X, Thapa N, Liao Y, Choi S and Anderson RA (2016) PtdIns (4, 5) P2 signaling regulates ATG14 and autophagy. Proc Natl Acad Sci U S A 113, 10896-10901 https://doi.org/10.1073/pnas.1523145113
  103. Corcelle-Termeau E, Vindelov SD, Hamalisto S et al (2016) Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy 12, 833-849 https://doi.org/10.1080/15548627.2016.1159378