DOI QR코드

DOI QR Code

Estimation of the effective population size using single-nucleotide polymorphism (SNP) information in Korean Holstein dairy cattle

단일염기다형성 정보를 이용한 국내 홀스타인 젖소의 유효집단 크기 추정

  • 조광현 (농촌진흥청 국립축산과학원) ;
  • 도경탁 (제주대학교 동물생명공학과) ;
  • 박경도 (전북대학교 동물생명공학과)
  • Received : 2017.03.02
  • Accepted : 2017.05.18
  • Published : 2017.05.31

Abstract

In this study, we investigated the genetic characteristics and the effective population size of domestic dairy cattle using 42,201 SNPs for 923 heads of Holstein cattle. The estimate for the average linkage disequilibrium ($r^2$) among the adjacent SNPs by chromosome was 0.22, and it was highest (0.26) in chromosome 14 and lowest (0.17) in chromosome 27. When the physical distance among SNPs was less than 25Kb, the estimate for the average $r^2$ was $0.31{\pm}0.33$ and it was markedly decreased as the physical distance increased. When the physical distance among SNPs was larger than 25Mb, the estimate for the average $r^2$ was 0.04, and it decreased by 0.27 (87.1%) compared with case of physical distance of less than 25Kb. There was a trend that the effective population size in Holstein dairy cattle decreased over generations and the estimate for the effective population size in the first 5 generations (1~5th generation) was 110 heads.

본 연구는 홀스타인 젖소, 923두에 대한 단일염기다형성 (SNP) 42,201개를 이용하여 국내 젖소집단의 유전적 특성 및 유효집단크기를 조사하고자 실시하였다. 염색체별 인접 단일염기다형성간의 평균 연관불평형 ($r^2$)은 0.22로 추정되었으며, 14번 염색체 (0.26)에서 가장 높은 반면, 27번 염색체 (0.17)에서 가장 낮게 나타났다. SNP간의 물리적 거리가 25Kb 미만인 경우에서 $r^2$$0.31{\pm}0.33$으로 추정되었으며, SNP간 물리적 거리가 증가할수록 $r^2$은 현저히 감소하였다. SNP간 물리적 거리가 2.5Mb 이상에서의 $r^2$은 0.04로 25Kb 미만인 경우와 비교할 때 0.27 (87.1%) 감소하였다. 국내 홀스타인 젖소의 유효집단크기는 세대수와 비례하여 감소하는 경향을 나타내었으며, 1~5세대에서 110두로 추정되었다.

Keywords

References

  1. Cho, K. H., Cho, C. l., Park, K. D. and Lee, J. H. (2015). Validation of diacylglycerol O-acyltransferase1 gene effect on milk yield using Bayesian regression. Journal of the Korean Data & Information Science Society, 26, 1249-1258. https://doi.org/10.7465/jkdi.2015.26.6.1249
  2. De Roos, A. P. W., Hayes, B. J., Spelman, R. J. and Goddard, M. E. (2008). Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics, 179, 1503-1512. https://doi.org/10.1534/genetics.107.084301
  3. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (methodological), 39, 1-38.
  4. Excoffier, L. and Slatkin, M. (1995). Maximum-likelihood-estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution, 12, 921-927.
  5. Flury, C., Tapio, M., Sonstegard, T., Droogemuuller, C., Leeb, T., Simianer, H., Hanotte, O. and Rieder, S. (2010). Effective population size of an indigenous Swiss cattle breed estimated from linkage disequilibrium. Journal of Animal Breeding and Genetics, 127, 339-347. https://doi.org/10.1111/j.1439-0388.2010.00862.x
  6. Hayes, B. J., Visscher, P. M., McPartlan, H. C. and Goddard, M. E. (2003). A novel multi-locus measure of linkage disequilibrium and it use to estimate past effective population size. GenomeResearch, 13, 635-643.
  7. Hayes, B. J. (2007). QTL mapping, MAS, and genomic selection. A short-course, Animal Breeding & Genetics Department of Animal Science, Iowa State University, IA.
  8. Hill, W. G. and Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38, 226-231. https://doi.org/10.1007/BF01245622
  9. Kim, E. S. and Kirkpatrick B. W. (2009) Linkage disequilibrium in the North American Holstein population. Animal Genetics, 40, 279-288. https://doi.org/10.1111/j.1365-2052.2008.01831.x
  10. Lee, J. Y., Lee, Y. W. and Yeo, J. S. (2007). Bootstrapping of Hanwoo chromosome17 based on BMS1167 microsatellite locus. Journal of the Korean Data & Information Science Society, 18, 175-184.
  11. Lewontin, R. C. (1964). The interaction of selection and linkage. I. General considerations; heterotic models. Genetics, 49, 49-67.
  12. Maiwashe, A., Nephawe, K. A., Van der Westhuizen, R. R., Mostert, B. E. and Theron, H. E. (2006). Rate of inbreeding and effective population size in four major South African dairy cattle breeds. South African Journal of Animal Science, 36, 50-57.
  13. McRae, A. F., McEwan, J. C., Dodds, K. G., Wilson, T., Crawford, A. M. and Slate, J. (2002). Linkage disequilibrium in domestic sheep. Genetics, 160, 1113-1122.
  14. Qanbari, S., Pimentel, E. C. G., Tetens, J., Thaller, G., Lichtner, P., Sharifi, A. R. and Simianer, H. (2010). The pattern of linkage disequilibrium in German Holstein cattle. Animal Genetics, 41, 346-356.
  15. Sargolzaei, M., Schenkel, F. S., Jansen, G. B. and Schaeffer, L. R. (2008). Extent of linkage disequilibrium in Holstein cattle in North America. Journal of Dairy Science, 91, 2106-2117. https://doi.org/10.3168/jds.2007-0553
  16. Sved, J. A. (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theoretical Population Biology, 2, 125-141. https://doi.org/10.1016/0040-5809(71)90011-6
  17. Uimari, P. and Tapio, M. (2011). Extent of linkage disequilibrium and effective population size in Finnish landrace and Finnish yorkshire pig breeds. Journal of Animal Science, 89, 609-614. https://doi.org/10.2527/jas.2010-3249
  18. Wall, E., Brotherstone, S., Kearney, J. F., Woolliams, J. A. and Coffey, M. P. (2005). Impact of nonadditive genetic effects in the estimation of breeding values for fertility and correlated traits. Journal of Dairy Science, 88, 376-385. https://doi.org/10.3168/jds.S0022-0302(05)72697-7
  19. Welgeland, K. A. and Lin S. W. (2002). Controlling inbreeding by constraining the average relationship between parents of young bulls entering AI progeny test programs. Journal of Dairy Science, 85, 2376-2383. https://doi.org/10.3168/jds.S0022-0302(02)74318-X
  20. Won, J. I., Dang, C. G., Lim, H. J., Jung, Y. S., Im, S. K., Lee, J. K., Kim, J. B., Cho, M. R., Min, H. L. and Yoon H. B. (2016). Analysis of pedigree structure and inbreeding coefficient for performance tested Holstein cows in Korea. Journal of Agriculture & Life Science, 50, 107-116. https://doi.org/10.14397/jals.2016.50.2.107
  21. Wright, S. (1938). Size of population and breeding structure in relation to evolution. Science, 87, 430-431.
  22. Zenger, K. R., Khatkar, M. S., Cavanagh, J. A. L., Hawken, R. J. and Raadsma, H. W. (2007). Genome?wide genetic diversity of Holstein Friesian cattle reveals new insights into Australian and global population variability, including impact of selection. Animal genetics, 38, 7-14. https://doi.org/10.1111/j.1365-2052.2006.01543.x