DOI QR코드

DOI QR Code

Physicochemical, Structural, and Rheological Properties of New Domestic Potato Cultivars

국산 신품종 감자의 이화학적, 구조적 및 유변학적 특성

  • Choi, Moonkyeung (Department of Food and Nutrition, Kyung Hee University) ;
  • Lee, Jungu (Department of Food and Nutrition, Kyung Hee University) ;
  • Jin, Yong-Ik (Highland Agriculture Research Institute, RDA) ;
  • Chang, Dong-Chil (Highland Agriculture Research Institute, RDA) ;
  • Kim, Misook (Department of Food Science and Nutrition, Dankook University) ;
  • Lee, Youngseung (Department of Food Science and Nutrition, Dankook University) ;
  • Chang, Yoon Hyuk (Department of Food and Nutrition, Kyung Hee University)
  • 최문경 (경희대학교 식품영양학과) ;
  • 이준구 (경희대학교 식품영양학과) ;
  • 진용익 (농촌진흥청 고령지농업연구소) ;
  • 장동칠 (농촌진흥청 고령지농업연구소) ;
  • 김미숙 (단국대학교 식품영양학과) ;
  • 이영승 (단국대학교 식품영양학과) ;
  • 장윤혁 (경희대학교 식품영양학과)
  • Received : 2017.02.24
  • Accepted : 2017.04.14
  • Published : 2017.05.31

Abstract

The objective of this study was to evaluate the physicochemical, structural, and rheological properties of new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun') against the foreign potato cultivar 'Atlantic'. Based on the results obtained from scanning electron micrograph, X-ray, and Fourier transform infrared spectrum analyses, the structural properties of all potato flours were not considerably different. Rapid visco analyzer analyses showed that the setback viscosities of 'Goun', 'Sebong', and 'Jinsun' were significantly lower than that of 'Atlantic'. For steady shear rheological properties, potato flour dispersions showed shear-thinning behaviors (n=0.45~0.49) at $25^{\circ}C$. Apparent viscosity and consistency index of 'Atlantic' were similar to those of 'Sebong' and 'Jinsun'. For dynamic shear rheological properties, storage modulus (G′) and loss modulus increased, whereas complex viscosity (${\eta}^*$) was reduced with increasing frequency from 0.63 to 62.8 rad/s. G′ and ${\eta}^*$ values of 'Jinsun' were significantly higher than those of the other potato cultivars.

본 연구는 국산 신품종 감자인 '고운', '새봉', '진선'의 이화학적, 구조적 및 유변학적 특성을 도입 품종인 '대서'와 비교하여 측정함으로써 신품종 감자의 가공적성 규명과 가공식품 제조를 위한 기초자료를 마련하기 위해 수행되었다. 감자가루의 총전분 함량은 도입 품종인 '대서'에서 73.34%로 유의적으로 가장 높게 나타났다. 품종별 감자가루의 인 함량은 '새봉'에서 2,249.94 ppm으로 가장 높게 나타났다. 신품종 감자가루의 구조분석 결과 전분 입자에 비전분성 물질이 결합 혹은 자유롭게 존재하는 미세구조를 나타내었고, X-선 회절도 분석에서 B형 전분의 결정형 피크를 나타내었다. FT-IR 분석 결과 지문영역에서 품종 간에 차이가 나타나지 않아 '대서'와 신품종 감자의 구조적인 특성에는 차이가 없는 것으로 나타났다. Rapid Visco Analyzer에 의한 페이스팅 특성은 '새봉' 품종의 peak viscosity가 유의적으로 높게 나타났으며, setback viscosity는 신품종 감자(38.67~56.00 cP)가 '대서(72.00 cP)'보다 낮게 나타났다. 정상유동 특성은 '대서'의 점조도 지수와 겉보기 점도가 가장 높게 나타났으며, 동적 점탄 특성에서는 진동수가 증가함에 따라 저장 탄성률(G′)과 손실 탄성률(G″) 값이 증가하는 경향을 나타내었으며, '진선'의 G′, G″과 복소 점도 값이 가장 높게 나타났다.

Keywords

References

  1. Hawkes JG. 1988. The evolution of cultivated potatoes and their tuber-bearing wild relatives. Die Kulturpflanze 36: 189-208. https://doi.org/10.1007/BF01986960
  2. McCay CM, McCay JB, Smith O. 1987. The nutritive value of potatoes. In Potato Processing. 4th ed. Talbert WF, Smith O, eds. AVI Book, Westport, CT, USA. p 287-331.
  3. Cho HM, Park YE, Cho JH, Kim SY. 2003. Historical review of land race potatoes in Korea. J Korean Soc Hortic Sci 44: 838-845.
  4. Cho JH, Park YE, Cho HM, Seo HW, Yi JY, Cheon CK, Chae WB, Kim TG, Kim JS, Lee YG, Chang DC, Kim SY, Hong SY. 2013. A new double cropping potato cultivar ‘Goun’ for potato chip processing with short dormancy. Korean J Breed 45: 262-267. https://doi.org/10.9787/KJBS.2013.45.3.262
  5. AC Nielsen. 2015. Korean Fast Moving Consumer Goods trends report 2014. http://www.nielsen.com/kr/ko/insights/2014/local-fmcg-report-20142h.html/ (accessed Feb 2017).
  6. Lee YJ, Jeong JC, Yoon YH, Hong SY, Kim SJ, Jin YI, Nam JH, Kwon OK. 2012. Evaluation of quality characteristics and definition of utilization category in Korean potato (Solanum tuberosum L.) cultivars. Korean J Crop Sci 57: 271-279. https://doi.org/10.7740/kjcs.2012.57.3.271
  7. Choi HD, Lee HC, Kim SS, Kim YS, Lim HT, Ryu GH. 2008. Nutrient components and physicochemical properties of new domestic potato cultivars. Korean J Food Sci Technol 40: 382-388.
  8. Kwon OY, Kim MY, Son CW, Liu XW, Kim HC, Yoon WK, Kim HM, Kim MR. 2008. Protein and amino acid composition of domestic potato cultivars. J Korean Soc Food Sci Nutr 37: 117-123. https://doi.org/10.3746/jkfn.2008.37.1.117
  9. Cho JH, Cheon CK, Chang DC, Im JS, Jin YI, Park YE, Kim DU, Yu HS. 2012. Potato yield and chip quality by planting and harvest periods in spring season. Korean J Hortic Sci Technol 30(S2): 56-57. https://doi.org/10.7235/hort.2012.11069
  10. Cho JH, Park YE, Cho HM, Seo HW, Yi JY, Cheon CK, Chae WB, Kim TG, Kim JS, Lee YG, Chang DC, Kim SY, Hong SY. 2013. A new double cropping potato cultivar ‘Goun’ for potato chip processing with short dormancy. Korean J Breed Sci 45: 262-267. https://doi.org/10.9787/KJBS.2013.45.3.262
  11. Cho JH, Cheon CK, Lee YG, Han SK, Lee HU, Kim SY, Kim TK, Cho KS, Im JS, Chang DC, Jin YI, Yu HS, Yang SC, Park YE, Cho HM, Jeong JC, Cho HY, Park MK. 2016. New potato variety 'Namsum' with short dormancy for potato chip processing. J Korean Soc Hortic Sci 34: 116.
  12. AACC International. 2000. Approved methods of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. 08-01, 30-10, 44-15A, 46-13, 76-13.01.
  13. Kahraman K, Koksel H, Ng PK. 2015. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content. Food Chem 174: 173-179. https://doi.org/10.1016/j.foodchem.2014.11.032
  14. Chung HJ, Li XQ, Kalinga D, Lim ST, Yada R, Liu Q. 2014. Physicochemical properties of dry matter and isolated starch from potatoes grown in different locations in Canada. Food Res Int 57: 89-94. https://doi.org/10.1016/j.foodres.2014.01.034
  15. Noda T, Tsuda S, Mori M, Takigawa S, Endo CM, Hashimoto N, Yamauchi H. 2004. Properties of starches form potato varieties grown in Hokkaido. J Appl Glycosci 51: 241-246. https://doi.org/10.5458/jag.51.241
  16. Zobel HF. 1964. X-ray analysis of starch granules. In Methods in Carbohydrate Chemistry. Academic Press, New York, NY, USA. Vol 4, p 109-113.
  17. Liu Q, Weber E, Currie V, Yada R. 2003. Physicochemical properties of starches during potato growth. Carbohydr Polym 51: 213-221. https://doi.org/10.1016/S0144-8617(02)00138-8
  18. Kim SW, Kim DS, Kim BY, Baik MY. 2008. Physicochemical properties of waxy rice, waxy rice flour and waxy rice starch during steeping. J Appl Biol Chem 51: 277-284. https://doi.org/10.3839/jabc.2008.043
  19. Jeong SH, Kang WS, Shin MS. 2011. Physicochemical properties of high yielding non-waxy rice flours extruded with different moisture contents. Korean J Food Cook Sci 27: 745-754. https://doi.org/10.9724/kfcs.2011.27.6.745
  20. Ahn CK, Cho BK, Kang JS, Lee KJ. 2012. Study on non-destructive sorting technique for lettuce (Lactuna sativa L) seed using fourier transform near-infrared spectrometer. Korean J Agric Sci 39: 111-116.
  21. Fang JM, Fowler PA, Tomkinson J, Hill CAS. 2002. The preparation and characterisation of a series of chemically modified potato starches. Carbohydr Polym 47: 245-252. https://doi.org/10.1016/S0144-8617(01)00187-4
  22. Hong J, Chen R, Zeng XA, Han Z. 2016. Effect of pulsed electric fields assisted acetylation on morphological, structural and functional characteristics of potato starch. Food Chem 192: 15-24. https://doi.org/10.1016/j.foodchem.2015.06.058
  23. Baek MH, Shin MS. 1995. Effect of water activity on the physicochemical properties of sweet potato starch during storage. Korean J Food Sci Technol 27: 532-536.
  24. Choi HD, Lee HC, Kim SS, Kim YS, Lim HT, Ryu GH. 2008. Nutrient components and physicochemical properties of new domestic potato cultivars. Korean J Food Sci Technol 40: 382-388.
  25. Higley JS, Love SL, Price WJ, Nelson JE, Huber KC. 2003. The Rapid Visco Analyzer (RVA) as a tool for differentiating potato cultivars on the basis of flour pasting properties. Am J Potato Res 80: 195-206. https://doi.org/10.1007/BF02855691
  26. Kim WW, Yoo B. 2009. Rheological behaviour of acorn starch dispersions: Effects of concentration and temperature. Int J Food Sci Technol 44: 503-509. https://doi.org/10.1111/j.1365-2621.2008.01760.x
  27. Eliasson AC. 1985. Retrogradation of starch as measured by differential scanning calorimetry. In New Approaches to Research on Cereal Carbohydrates. Hill RD, Munch L, eds. Elsevier Science, Amsterdam, Netherlands. p 93-98.
  28. Henning HJ, Lechert H, Goemanr W. 1976. Examination of swelling mechanism of starch by pulsed NMR method. Starch 28: 10-13. https://doi.org/10.1002/star.19760280103
  29. Tester RF, Morrison WR. 1990. Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem 67: 558-563.
  30. Morris ER. 1989. Polysaccharide solution properties: origin, rheological characterization and implications for food system. In Frontiers Carbohydrate Research 1: Food Applications. Millane RP, BeMiller JN, Chandrasekaran R, eds. Elsevier Applied Science, New York, NY, USA. p 132-163.
  31. Cho SA, Yoo BS. 2008. Rheological properties of sweet potato starch-sucrose composite. Korean J Food Sci Technol 40: 184-189.