DOI QR코드

DOI QR Code

Method Validation for Determination of Lignan Content in Fermented Sesame by Bioconversion

생물전환된 참깨 발효물의 Lignan 화합물의 분석법 검증

  • Jung, Tae-Dong (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Jae-Min (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Sun-Il (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Seung-Hyun (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Cho, Bong-Yeon (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Jin-Ha (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Sang Jong (STR Biotech Co., LTD.) ;
  • Park, Seon Ju (STR Biotech Co., LTD.) ;
  • Heo, In Young (STR Biotech Co., LTD.) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2017.02.08
  • Accepted : 2017.04.13
  • Published : 2017.05.31

Abstract

The aim of this study was to investigate method validation for determination of sesamol, sesamin, and sesamolin in non-fermented sesame and fermented sesame by bioconversion. For validation, the specificity, linearity, precision, accuracy, limits of detection (LOD), and quantification (LOQ) of sesamol, sesamin, and sesamolin were measured by HPLC. Linearity tests showed that the coefficients of calibration correlation ($R^2$) for sesamol, sesamin, and sesamolin were 0.9999. Recovery rates of lignan contents in non-fermented and fermented sesame were high in the ranges of 100.27~115.10% and 98.43~114.90%, respectively. The inter-day and intra-day precisions of sesamin and sesamolin analyses for non-fermented and fermented sesame were 0.27~1.94% and 0.25~0.69%, respectively. The LOD and LOQ were $0.23{\sim}0.34{\mu}g/g$ and $0.70{\sim}1.03{\mu}g/g$, respectively. These results indicate that the validated method is appropriate for the determination of sesamol, sesamin, and sesamolin.

본 연구에서는 HPLC를 이용하여 생물전환된 참깨의 lignan 화합물 분석법 검증을 시행하였다. 분석법 검증 결과 표준용액 sesamol, sesamin, sesamolin과 참깨 비발효물 및 발효물의 머무름 시간이 일치하는 것을 확인하였으며, spectrum 분석 결과 동일한 spectrum을 나타내어 특이성을 확인하였다. 직선성의 경우 sesamol, sesamin 및 sesamolin의 검량선은 모두 0.9999로 1에 가까운 우수한 직선성을 보여주었다. 참깨 비발효물의 lignan 함량 측정 결과, intra-day에서 2.67 mg/g 및 inter-day에서 2.42 mg/g으로 나타났으며, sesamolin은 intra-day에서 3.77 mg/g 및 inter-day에서 3.37 mg/g을 나타내었다. 참깨 발효물의 sesamin 함량은 intra, inter-day에서 각각 2.97 mg/g, 2.75 mg/g을 보였으며, sesamolin은 intra-day 4.23 mg/g, inter-day 3.92 mg/g으로 나타났다. 일내 정밀도에서 참깨 비발효물의 경우 0.25~0.43%로 나타났으며 참깨 발효물은 0.47~0.69%를 나타냈다. 일간 정밀도에서 참깨 비발효물은 RSD 0.27~0.64%의 정밀도를 보였으며 참깨 발효물은 1.34~1.94%의 정밀도를 나타내어 모두 RSD 5% 이하의 우수한 정밀성을 나타내었다. 또한, sesamol은 98.43~110.72%, sesamin은 106.45~115.10%, sesamolin은 99.18~112.05%의 범위의 우수한 회수율을 나타내었다. 검출한계는 sesamol $0.34{\mu}g/g$, sesamin $0.26{\mu}g/g$, sesamolin $0.23{\mu}g/g$으로 나타났으며, 정량한계는 각각 $1.03{\mu}g/g$, $0.78{\mu}g/g$, $0.70{\mu}g/g$을 보였다. 본 연구 결과 지표성분 sesamol, sesamin 및 sesamolin의 분석방법이 적합한 분석방법임을 확인할 수 있었다.

Keywords

References

  1. Kim GS, Kim DH, Jeong MR, Jang IB, Shim KB, Kang CH, Lee SE, Seong NS, Song KS. 2004. Quantitative analysis of sesamin and sesamolin in various cultivars of sesame. Korean J Crop Sci 49: 496-502.
  2. Makinde FM, Akinoso R. 2014. Comparison between the nutritional quality of flour obtained from raw, roasted and fermented sesame (Sesamum indicum L.) seed grown in Nigeria. Acta Sci Pol Technol Aliment 13: 309-319. https://doi.org/10.17306/J.AFS.2014.3.9
  3. Kikugawa K, Arai M, Kurechi T. 1983. Participation of sesamol in stability of sesame oil. J Am Chem Soc 60: 1528-1533.
  4. Lee MS, Kim HW, Bang SK, Kang MH. 2005. Antioxidative effects and its metabolites in rat fed sesamol. J Korean Soc Food Sci Nutr 34: 21-26. https://doi.org/10.3746/jkfn.2005.34.1.021
  5. Ramachandran S, Prasad NR, Karthikeyan S. 2010. Sesamol inhibits UVB-induced ROS generation and subsequent oxidative damage in cultured human skin dermal fibroblasts. Arch Dermatol Res 302: 733-744. https://doi.org/10.1007/s00403-010-1072-1
  6. Prasad NR, Menon VP, Vasudev V, Pugalendi KV. 2005. Radioprotective effect of sesamol on ${\gamma}$-radiation induced DNA damage, lipid peroxidation and antioxidants levels in cultured human lymphocytes. Toxicology 209: 225-235. https://doi.org/10.1016/j.tox.2004.12.009
  7. Hou RCW, Huang HM, Tzen JTC, Jeng KCG. 2003. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J Neurosci Res 74: 123-133. https://doi.org/10.1002/jnr.10749
  8. Min Z, Choi HS, Lee MK. 2010. Enhancement of dopamine biosynthesis by sesamin in PC12 cells. Korean J Pharmacogn 41: 221-226.
  9. Kang MH, Naito M, Tsujihara N, Osawa T. 1998. Sesamolin inhibits lipid peroxidation in rat liver and kidney. J Nutr 128: 1018-1022. https://doi.org/10.1093/jn/128.6.1018
  10. Dehkordi FR, Roghani M. 2011. Mechanisms underlying sesamolin-induced attenuation of vascular dysfunction in rats with streptozotocin-induced diabetes. Int J Endocrinol Metab 9: 311-316.
  11. Cho YH, Cho JS, Lee GW. 2011. Antioxidant activity of wood vinegar by bioconversion. J Korea Acad Industr Coop Soc 12: 4434-4442. https://doi.org/10.5762/KAIS.2011.12.10.4434
  12. Na EJ, Moon JS. 2015. Studies on the biological activities of the bioconversioned soybean extracts. J Kor Soc Cosm 21: 82-92.
  13. Kim YH, Bae DB, Park SO, Lee SJ, Cho OH, Lee OH. 2013. Method validation for the determination of eleutherosides and ${\beta}$-glucan in Acanthopanax koreanum. J Korean Soc Food Sci Nutr 42: 1419-1425. https://doi.org/10.3746/jkfn.2013.42.9.1419
  14. KFDA. 2008. Guideline for standard of health functional food. Korea Food and Drug Administration, Seoul, Korea. p 1-146.
  15. Schwertner HA, Stankus JJ. 2015. Characterization of the fluorescent spectra and intensities of various lignans: application to HPLC analysis with fluorescent detection. J Chromatogr Sci 53: 1481-1484. https://doi.org/10.1093/chromsci/bmv041
  16. Sadeghi N, Oveisi MR, Hajimahmoodi M, Jannat B, Mazaheri M, Mansouri S. 2009. The contents of sesamol in Iranian sesame seeds. Iran J Pharm Res 8: 101-105.
  17. KFDA. 2015. Korea Food Additives Code. Korea Food and Drug Administration, Osong, Korea. p 1237-1238.
  18. KFDA. 2015. Analytical method guideline about validation of drugs and etc. Korea Food and Drug Administration, Osong, Korea. p 1-26.
  19. Jeon SY, Jeong EJ, Baek JH, Cha YJ. 2011. Analytical method validation of quercetin in Changnyeong onion extract as a functional ingredient for functional health food. J Korean Soc Food Sci Nutr 40: 565-569. https://doi.org/10.3746/jkfn.2011.40.4.565
  20. Lim JS, Adachi Y, Takahashi Y, Ide T. 2007. Comparative analysis of sesame lignans (sesamin and sesamolin) in affecting hepatic fatty acid metabolism in rats. Br J Nutr 97: 85-95. https://doi.org/10.1017/S0007114507252699
  21. Lee HJ, Son DJ, Kang MH, Lee BC, Hong JT. 2006. Effects of lignan compound of sesame on LPS-induced nitric oxide generation in murine macrophage RAW 264.7 cells. J Soc Cosmet Sci Korea 32: 173-180.
  22. Jung TD, Shin GH, Kim JM, Oh JW, Choi SI, Lee JH, Cho ML, Lee SJ, Heo IY, Park SJ, Kim SU, Jung CS, Lee OH. 2016. Changes in lignan content and antioxidant activity of fermented sesame (Sesame indicum L.) by cultivars. J Korean Soc Food Sci Nutr 45: 143-148. https://doi.org/10.3746/jkfn.2016.45.1.143
  23. Ju YW, Son MH, Lee JS, Lee MY, Byun SY. 2005. Supercritical fluid extraction of sesame oil with high content of sesamol. Korean J Biotechnol Bioeng 20: 205-209.
  24. Jeon YJ, Kwak H, Choi JG, Lee JH, Choi SI. 2016. Analytical method for the validation of hispidulin as a marker compound for the standardization of Salvia plebeia R. Br. extracts as a functional ingredient. Korean J Med Crop Sci 24: 271-276. https://doi.org/10.7783/KJMCS.2016.24.4.271
  25. Sukumar D, Arimboor R, Arumughan C. 2008. HPTLC fingerprinting and quantification of lignans as markers in sesame oil and its polyherbal formulations. J Pharm Biomed Anal 47: 795-801. https://doi.org/10.1016/j.jpba.2008.03.018