DOI QR코드

DOI QR Code

Evaluation of Molecular Structural Changes in Starch Depending on Amylose Content Using Dynamic Light Scattering

동적광산란법을 이용한 아밀로즈 함량에 따른 전분 분자 구조 변화 분석

  • Moon, Ju-Hyeon (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Ma, Jin-Gyeong (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Jong-Yea (Department of Food Science and Biotechnology, Kangwon National University)
  • 문주현 (강원대학교 식품생명공학과) ;
  • 마진경 (강원대학교 식품생명공학과) ;
  • 김종예 (강원대학교 식품생명공학과)
  • Received : 2017.02.24
  • Accepted : 2017.04.19
  • Published : 2017.05.31

Abstract

To evaluate the effects of amylose content and dissolution media on the molecular structure of maize starch, changes in the hydrodynamic diameter of starch molecules were assessed via dynamic light scattering depending on amylose content and dissolution media. As the amylose content of starch increased, the hydrodynamic diameter of starch molecules proportionally decreased from 204 to 92 nm. To alter ionic strength, hydrogen bonding, or polarity of dissolution media, various contents of NaCl (1, 2, or 3 M), urea (1, 2, or 3 M), or 1-butanol (0.1, 0.5, or 1.0%) were added to media, respectively, resulting in increased hydrodynamic diameter of starch. However, the degree of expansion was dependent on amylose content and the concentration and/or type of additive. The hydrodynamic diameter of starch molecules exhibited significant correlation with amylose content obtained by size exclusion chromatography, regardless of dissolution conditions.

본 연구에서는 동적광산란법을 이용하여 아밀로즈 함량과 용매 조건에 따른 전분 분자 구조 변화를 규명하였다. 분자량이 다른 여러 가지 덱스트란 표준물질을 이용하여 동적광산란법의 정확성을 검증하였으며, 이를 전분에 적용해본 결과 아밀로즈 함량에 따른 전분 분자의 $D_h$ 변화를 규명할 수 있었고 아밀로즈 함량이 높아질수록 전분 분자의 $D_h$ 값이 증가하였다. 또한, 용매 조건에 따른 전분 분자의 $D_h$ 변화를 동적광산란법으로 규명할 수 있었으며, NaCl의 경우 농도가 높아질수록 아밀로펙틴의 $D_h$가 증가했지만, 아밀로즈의 $D_h$는 urea에 더 큰 영향을 받는 것으로 생각된다. 1-Butanol의 경우 전분 분자의 $D_h$를 증가시켰지만 주목할 만한 경향은 관찰하지 못하였다. 또한, 전분의 아밀로즈 함량과 전분 분자의 $D_h$는 유의적인 상관관계를 보였으며, 이를 활용할 경우 전분의 아밀로즈 함량을 예측하는 데 도움이 될 수 있을 것이라고 기대한다.

Keywords

References

  1. Vilaplana F, Hasjim J, Gilbert RG. 2012. Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydr Polym 88: 103-111. https://doi.org/10.1016/j.carbpol.2011.11.072
  2. Morrison WR, Laignelet B. 1983. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci 1: 9-20. https://doi.org/10.1016/S0733-5210(83)80004-6
  3. You SG, Lim ST. 2000. Molecular characterization of corn starch using an aqueous HPSEC-MALLS-RI system under various dissolution and analytical conditions. Cereal Chem 77: 303-308. https://doi.org/10.1094/CCHEM.2000.77.3.303
  4. Gibson TS, Solah VA, McCleary BV. 1997. A procedure to measure amylose in cereal starches and flours with concanavalin A. J Cereal Sci 25: 111-119. https://doi.org/10.1006/jcrs.1996.0086
  5. Vilaplana F, Gilbert RG. 2010. Two-dimensional size/branch length distributions of a branched polymer. Macromolecules 43: 7321-7329. https://doi.org/10.1021/ma101349t
  6. Tizzotti MJ, Sweedman MC, Tang D, Schaefer C, Gilbert RG. 2011. New $^1H$ NMR procedure for the characterization of native and modified food-grade starches. J Agric Food Chem 59: 6913-6919. https://doi.org/10.1021/jf201209z
  7. Vilaplana F, Gilbert RG. 2010. Characterization of branched polysaccharides using multiple-detection size separation techniques. J Sep Sci 33: 3537-3554. https://doi.org/10.1002/jssc.201000525
  8. Cave RA, Seabrook SA, Gidley MJ, Gilbert RG. 2009. Characterization of starch by size-exclusion chromatography: the limitations imposed by shear scission. Biomacromolecules 10: 2245-2253. https://doi.org/10.1021/bm900426n
  9. Murphy RM. 1997. Static and dynamic light scattering of biological macromolecules: what can we learn?. Curr Opin Biotechnol 8: 25-30. https://doi.org/10.1016/S0958-1669(97)80153-X
  10. Chiou H, Fellows CM, Gilbert RG, Fitzgerald MA. 2005. Study of rice-starch structure by dynamic light scattering in aqueous solution. Carbohydr Polym 61: 61-71. https://doi.org/10.1016/j.carbpol.2005.02.011
  11. Han JA, Lim H, Lim ST. 2005. Comparison between size exclusion chromatography and micro-batch analyses of corn starches in DMSO using light scattering detector. Starch/Starke 57: 262-267. https://doi.org/10.1002/star.200400365
  12. Han JA, Lim ST. 2004. Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydr Polym 55: 193-199. https://doi.org/10.1016/j.carbpol.2003.09.006
  13. Bello-Perez LA, Colonna P, Roger P, Parees-Lopez O. 1998. Laser light scattering of high amylose and high amylopectin materials in aqueous solution, effect of storage time. Carbohydr Polym 37: 383-394. https://doi.org/10.1016/S0144-8617(97)00139-2
  14. McGrane SJ, Mainwaring DE, Cornell HJ, Rix CJ. 2004. The role of hydrogen bonding in amylose gelation. Starch/Starke 56: 122-131. https://doi.org/10.1002/star.200300242
  15. Le Bail P, Rondeau C, Buleon A. 2005. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. Int J Biol Macromol 35: 1-7. https://doi.org/10.1016/j.ijbiomac.2004.09.001