DOI QR코드

DOI QR Code

Flexible and Transparent Silica Aerogels: An Overview

  • Parale, Vinayak G. (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Kyu-Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2017.04.24
  • Accepted : 2017.05.22
  • Published : 2017.05.31

Abstract

Silica aerogels are attracting attention due to certain outstanding properties such as low bulk density, low thermal conductivity, high surface area, high porosity, high transparency and flexibility. Due to these extraordinary properties of aerogels, they have become a promising candidate in thermal superinsulation. The silica-based aerogels are brittle in nature, which constrains their large scale-application. It is necessary to achieve transparency and flexibility of silica-based aerogels at the same time and with the same porous structure for optical field applications. Therefore, the present review focuses on the different sol-gel synthesis parameters and precursors in the synthesis of flexible as well as transparent silica aerogels. Also, a brief overview of reported flexible and transparent aerogels with some important properties and applications is provided.

Keywords

References

  1. N. D. Kaushika and K. Sumathy, "Solar Transparent Insulation Materials: A Review," Renew. Sustainable Energy Rev., 7 [4] 317-51 (2003). https://doi.org/10.1016/S1364-0321(03)00067-4
  2. M. Reim, W. Korner, J. Manara, S. Korder, M. Arduini-Schuster, H. P. Ebert, and J. Fricke, "Silica Aerogel Granulate Material for Thermal Insulation and Daylighting," Sol. Energy, 79 [2] 131-39 (2005). https://doi.org/10.1016/j.solener.2004.08.032
  3. K. I. Jensen, J. M. Schultz, and F. H. Kristiansen, "Development of Windows Based on Highly Insulating Aerogel Glazings," J. Non-Cryst. Solids, 350 351-57 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.06.047
  4. T. Stegmaier, M. Linke, and H. Planck, "Bionics in Textiles: Flexible and Translucent Thermal Insulations for Solar Thermal Applications," Philos. Trans. R. Soc., A, 367 [1894] 1749-58 (2009). https://doi.org/10.1098/rsta.2009.0019
  5. M. A. B. Meador, E. J. Malow, R. Silva, S. Wright, D. Quade, S. L. Vivod, H. Guo, J. Guo, and M. Cakmak, "Mechanically Strong, Flexible Polyimide Aerogels Cross-Linked with Aromatic Triamine," ACS Appl. Mater. Interfaces, 4 [2] 536-44 (2012). https://doi.org/10.1021/am2014635
  6. N. Bheekhun, A. R. A. Talib, and M. R. Hassan, "Aerogels in Aerospace: An Overview," Adv. Mater. Sci. Eng., 2013 406065 (2013).
  7. G. Hayase, K. Kugimiya, M. Ogawa, Y. Kodera, K. Kanamori, and K. Kakanishi, "The Thermal Conductivity of Polymethylsilsesquioxane Aerogels and Xerogels with Varied Pore Sizes for Practical Application as Thermal Superinsulators," J. Mater. Chem. A, 2 [18] 6525 (2014). https://doi.org/10.1039/C3TA15094A
  8. F. Rechberger and M. Niederberger, "Synthesis of Aerogels: from Molecular Routes to 3-Dimensional Nanoparticle Assembly," Nanoscale Horiz., 2 [1] 6-30 (2017). https://doi.org/10.1039/C6NH00077K
  9. M. Schwan and L. Ratke, "Flexibilisation of Resorcinol-Formaldehyde Aerogels," J. Mater. Chem. A, 1 [43] 13462-68 (2013). https://doi.org/10.1039/c3ta13172f
  10. D. B. Mahadik, A. V. Rao, V. G. Parale, M. S. Kavale, P. B. Wagh, S. V. Ingle, and S. C. Gupta, "Effect of Surface Composition and Roughness on the Apparent Surface Free Energy of Silica Aerogel Materials," Appl. Phys. Lett., 99 [10] 104104 (2011). https://doi.org/10.1063/1.3635398
  11. M. S. Kavale, S. A. Mahadik, D.B. Mahadik, V. G. Parale, A. V. Rao, R. S. Vhatkar, P. B. Wagh, and S. C. Gupta, "Enrichment in Hydrophobicity and Scratch Resistant Properties of Silica Films on Glass by Grafted Microporosity of the Network," J. Sol-Gel Sci. Technol., 64 [1] 9-16 (2012). https://doi.org/10.1007/s10971-012-2822-7
  12. U. K. H. Bangi, I. K. Jung, C. S. Park, S. Baek, and H. H. Park, "Optically Transparent Silica Aerogels Based on Sodium Silicate by a Two-Step Sol-Gel Process and Ambient Pressure Drying," Solid State Sci., 18 50-7 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.12.016
  13. G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C. M. Han, C. Mahaptra, H. W. Kim, and J. C. Knowles, "Sol-Gel Based Materials for Biomedical Applications," Prog. Mater. Sci., 77 1-79 (2016). https://doi.org/10.1016/j.pmatsci.2015.12.001
  14. D. B. Mahadik, Y. K. Lee, C. S. Park, H. Y. Chung, M. H. Hong, H. N. R. Jung, W. Han, and H. H. Park, "Effect of Water Ethanol Solvents Mixture on Textural and Gas Sensing Properties of Tin Oxide Prepared Using Epoxide-Assisted Sol-Gel Process and Dried at Ambient Pressure," Solid State Sci., 50 1-8 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.10.003
  15. V. G. Parale, D. B. Mahadik, M. S. Kavale, A. V. Rao, P. B. Wagh, and S. C. Gupta, "Potential Application of Silica Aerogel Granules for Cleanup of Accidental Spillage of Various Organic Liquids," Soft Nanosci. Lett., 1 [04] 97-104 (2011). https://doi.org/10.4236/snl.2011.14017
  16. J. L. Gurav, A. V. Rao, D. Y. Nadargi, and H. H. Park, "Ambient Pressure Dried TEOS-based Silica Aerogels: Good Absorbents of Organic Liquids," J. Mater. Sci., 45 [2] 503-10 (2010). https://doi.org/10.1007/s10853-009-3968-8
  17. V. G. Parale, D. B. Mahadik, M. S. Kavale, S. A. Mahadik, A. V. Rao, and S. Mullens, "Sol-Gel Preparation of PTMS Modified Hydrophobic and Transparent Silica Coatings," J. Porous Mater., 20 [4] 733-39 (2013). https://doi.org/10.1007/s10934-012-9648-0
  18. T. Graham, "On the Molecular Mobility of Gases," J. Chem. Soc., 17 334-62 (1864). https://doi.org/10.1039/JS8641700334
  19. S. S. Kistler, "Coherent Expanded Aerogels and Jellies," Nature, 127 741 (1931).
  20. Y. Pan, S. He, L. Gong, X. Cheng, C. Li, Z. Li, Z. Liu, and H. Zhang, "Low Thermal-Conductivity and High Thermal Stable Silica Aerogels Based on MTMS/Water-Glass Co-Precursor Prepared by Freeze Drying," Mater. Des., 113 246-53 (2017). https://doi.org/10.1016/j.matdes.2016.09.083
  21. U. K. H. Bangi, M. S. Kavale, S. Baek, and H. H. Park, "Synthesis of MWCNT's Doped Sodium Silicate Based Aerogels by Ambient Pressure Drying," J. Sol-Gel Sci. Technol., 62 [2] 201-7 (2012). https://doi.org/10.1007/s10971-012-2710-1
  22. V. G. Parale, D. B. Mahadik, S. A. Mahadik, M. S. Kavale, A. V. Rao, and P. B. Wagh, "Wettability Study of Surface Modified Silica Aerogels with Different Silylating Agents," J. Sol-Gel Sci. Technol., 63 [3] 573-79 (2012). https://doi.org/10.1007/s10971-012-2788-5
  23. U. K. H. Bangi, C. S. Park, S. Baek, and H. H. Park, "Improvement in Optical and Physical Properties of TEOS Based Aerogels Using Acetonitrile via Ambient Pressure Drying," Ceram. Int., 38 [8] 6883-88 (2012). https://doi.org/10.1016/j.ceramint.2012.07.051
  24. P. B. Sarawade, J. K. Kim, H. K. Kim, and H. T. Kim, "High Specific Surface Area TEOS-Based Aerogels with Large Pore Volume Prepared at an Ambient Pressure," Appl. Surf. Sci., 254 [2] 574-79 (2007). https://doi.org/10.1016/j.apsusc.2007.06.063
  25. G. S. Kim, S. H. Hyun, and H. H. Park, "Synthesis of Low-Dielectric Silica Aerogel Films by Ambient Drying," J. Am. Ceram. Soc., 84 [2] 453-55 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00677.x
  26. M. Venkataraman, R. Mishra, T. M. Kotresh, J. Militky, and H. Jamshid, "Aerogels for Thermal Insulation in High-Performance Textiles," Text. Prog., 48 [2] 55-118 (2016). https://doi.org/10.1080/00405167.2016.1179477
  27. B. C. Dunn, P. Cole, D. Covington, M. C. Webster, R. J. Pugmire, R. C. Ernst, E. M. Eyring, N. Shah, and G. P. Huffman, "Silica Aerogel Supported Catalysts for Fischer-Tropsch Synthesis," Appl. Catal., A, 278 [2] 233-38 (2005). https://doi.org/10.1016/j.apcata.2004.10.002
  28. A. V. Rao, N. D. Hegde, and H. Hirashima, "Absorption and Desorption of Organic Liquids in Elastic Superhydrophobic Silica Aerogels," J. Colloid Interface Sci., 305 [1] 127-32 (2007).
  29. M. K. Carroll and A. M. Anderson, "Aerogels as Platforms for Chemical Sensors," pp. 637-50 in Aerogels Handbook, Springer, New York, 2011.
  30. S. B. Jung, S. W. Park, J. K. Yang, H. H. Park, and H. Kim, "Application of $SiO_2$ Aerogel Film for Interlayer Dielectric on GaAs with a Barrier of $Si_3N_4$," Thin Solid Films, 447 580-85 (2004).
  31. U. Guenther, I. Smirnova, and R. H. H. Neubert, "Hydrophobic Silica Aerogels as Dermal Drug Delivery Systems-Dithranol as a Model Drug," Eur. J. Pharm. Biopharm., 69 [3] 935-42 (2008). https://doi.org/10.1016/j.ejpb.2008.02.003
  32. T. Gao and B. P. Jelle, "Silica Aerogels: A Multifunctional Building Material," pp. 35-41 in Nanotechnology in Construction, Springer International Publishing, Switzerland, 2015.
  33. X. Wang and S. C. Jana, "Synergistic Hybrid Organic-Inorganic Aerogels," ACS Appl. Mater. Interfaces, 5 [13] 6423-29 (2013). https://doi.org/10.1021/am401717s
  34. L. A. Capadona, M. A. B. Meador, A. Alunni, E. F. Fabrizio, P. Vasilaras, and N. Leventis, "Flexible, Low-Density Polymer Crosslinked Silica Aerogels," Polymer, 47 [16] 5754-61 (2006). https://doi.org/10.1016/j.polymer.2006.05.073
  35. Y. Duan, S .C. Jana, A. M. Reinsel, B. Lama, and M. P. Espe, "Surface Modification and Reinforcement of Silica Aerogels Using Polyhedral Oligomeric Silsesquioxanes," Langmuir, 28 [43] 15362-71 (2012). https://doi.org/10.1021/la302945b
  36. Z. Wang, Z. Dai, J. Wu, N. Zhao, and J. Xu, "Vacuum Dried Robust Bridged Silsesquioxane Aerogels," Adv. Mater., 25 [32] 4494-97 (2013). https://doi.org/10.1002/adma.201301617
  37. Q. Gao, J. feng, C. Zhang, J. Feng, W. Wu, and Y. Jiang, "Mechanical Properties of Aerogel-Ceramic Fiber Composites," Adv. Mater. Res., 105 94-9 (2010).
  38. B. Yuan, S. ding, D. Wang, G. Wang, and H. Li, "Heat Insulation Properties of Silica Aerogel/Glass Fiber Composites Fabricated by Press Forming," Mater. Lett., 75 204-6 (2012). https://doi.org/10.1016/j.matlet.2012.01.114
  39. A. Slosarczyk, "Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites," Nanomaterials, 7 [2] 44 (2017). https://doi.org/10.3390/nano7020044
  40. Q. Mi, S. Ma, J. Yu, J. He, and J. Zhang, "Flexible and Transparent Cellulose Aerogels with Uniform Nanoporous Structure by a Controlled Regeneration Process," ACS Sustainable Chem. Eng., 4 656-60 (2016). https://doi.org/10.1021/acssuschemeng.5b01079
  41. F. Fischer, A. Rigacci, R. Pirard, S. Berthon-Fabry, and P. Achard, "Cellulose Based Aerogels," Polymer, 47 7636-45 (2006). https://doi.org/10.1016/j.polymer.2006.09.004
  42. S. Takeshita and S. Yoda, "Chitosan Aerogels: Transparent, Flexible Thermal Insulators," Chem. Mater., 27 [22] 7569-72 (2015). https://doi.org/10.1021/acs.chemmater.5b03610
  43. K. Kanamori, M. Aizawa, K. Nakanishi, and T. Hanada, "Elastic Organic-Inorganic Hybrid Aerogels and Xerogels," J. Sol-Gel Sci. Technol., 48 [1-2] 172-81 (2008). https://doi.org/10.1007/s10971-008-1756-6
  44. T. Shimizu, K. Kanamori, and K. Nakanishi, "Siliconebased Organic-Inorganic Hybrid Aerogels and Xerogels," Chem. Eur. J., 23 [22] 5176-87 (2017). https://doi.org/10.1002/chem.201603680
  45. A. S. Dorcheh and M. H. Abbasi, "Silica Aerogels: Synthesis, Properties and Characterization," J. Mater. Process. Technol., 199 [1] 10-26 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.060
  46. J. L. Gurav, I. K. Jung, H. H. Park, E. S. Kang, and D. Y. Nadargi, "Silica Aerogel: Synthesis and Applications," J. Nanomater., 2010 23 (2010).
  47. C. J. Brinker and G. W. Scherer, "Particulate Sols and Gels," pp. 235-97 in Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.
  48. A. C. Pierre and G. M. Pajonk, "Chemistry of Aerogels and their Applications," Chem. Rev., 102 [11] 4243-66 (2002). https://doi.org/10.1021/cr0101306
  49. H. Schmidt, "Chemistry of Material Preparation by Sol-Gel Process," J. Non-Cryst. Solids, 100 51-64 (1988). https://doi.org/10.1016/0022-3093(88)90006-3
  50. K. Sinko, "Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels," Materials, 3 [1] 704-40 (2010). https://doi.org/10.3390/ma3010704
  51. C. J. Brinker, "Hydrolysis and Condensation of Silicates: Effects on Structure," J. Non-Cryst. Solids, 100 31-50 (1988). https://doi.org/10.1016/0022-3093(88)90005-1
  52. T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, C. M. Doherty, P. Falcaro, and K. Nakanishi, "Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying," Chem. Mater., 28 [19] 6860-68(2016). https://doi.org/10.1021/acs.chemmater.6b01936
  53. G. Hayase, K. Kanamori, M. Fukuchi, H. Kaji, and K. Nakanishi, "Facile Synthesis of Marshmallow-like Macroporous Gels Usable under Harsh Conditions for the Separation of Oil and Water," Angew. Chem., Int. Ed., 52 [7] 1986-89 (2013). https://doi.org/10.1002/anie.201207969
  54. T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, and K. Nakanishi, "Transparent Ethylene-Bridged Polymethylsiloxane Aerogels and Xerogels with Improved Bending Flexibility," Langmuir, 32 [50] 13427-34 (2016). https://doi.org/10.1021/acs.langmuir.6b03249
  55. Y. Aoki, T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, and K. Nakanishi, "Low-Density, Transparent Aerogels and Xerogels Based on Hexylene-Bridged Polysilsesquioxane with Bendability," J. Sol-Gel Sci. Technol., 81 [1] 42-51 (2017). https://doi.org/10.1007/s10971-016-4077-1
  56. S. A. Mahadik, F. Pedraza, V. G. Parale, and H. H. Park, "Organically Modified Silica Aerogel with Different Functional Silylating Agents and Effect on their Physico-Chemical Properties," J. Non-Cryst. Solids, 453 164-71 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.08.035
  57. D. Y. Nadargi, S. S. Latthe, and A. V. Rao, "Effect of Post-Treatment (Gel Aging) on the Properties of Methyltrimethoxysilane Based Silica Aerogels Prepared by Two-Step Sol-Gel Process", J. Sol-Gel Sci. Technol., 49 [1] 53-9 (2009). https://doi.org/10.1007/s10971-008-1830-0
  58. S. Iswar, W. J. Malfait, S. Balog, F. Winnefeld, M. Lattuada, and M. M. Koebel, "Effect of Aging on Silica Aerogel Properties," Microporous Mesoporous Mater., 241 293-302 (2017). https://doi.org/10.1016/j.micromeso.2016.11.037
  59. H. Omranpur, A. Dourbash, and S. Motahari, "Mechanical Properties Improvement of Silica Aerogel through Aging: Role of Solvent Type, Time and Temperature," AIP Conf. Proc., 1593 [1] 298-302 (2014).
  60. N. K. On, A. A. Rashid, M. M. M. Nazlan, and H. Hamdan, "Thermal and Mechanical Behavior of Natural Rubber Latex-Silica Aerogel Film," J. Appl. Polym. Sci., 124 [4] 3108-16 (2012). https://doi.org/10.1002/app.35354
  61. T. Woignier, J. Phalippou, H. Hdach, and G. W. Scherer, "Mechanical Properties of Silica Alcogels and Aerogels," pp. in 1087-99 in MRS Proceedings, Cambridge University Press, 1990.
  62. U. K. H. Bangi, A. V. Rao, and A. P. Rao, "A New Route for Preparation of Sodium-Silicate-Based Hydrophobic Silica Aerogels via Ambient-Pressure Drying," Sci. Technol. Adv. Mater., 9 [3] 035006 (2008). https://doi.org/10.1088/1468-6996/9/3/035006
  63. S. Haereid, E. Nilsen, V. Ranum, and M. A. Einarsrud, "Thermal and Temporal Aging of Two Step Acid-Base Catalyzed Silica Gels in Water/Ethanol Solutions," J. Sol-Gel Sci. Technol., 8 [1] 153-57 (1997).
  64. M. A. Einarsrud and E. Nilsen, "Thermal and Temporal Aging of Silica Gels in Monomer Solutions," J. Sol-Gel Sci. Technol., 13 [1] 317-22 (1998). https://doi.org/10.1023/A:1008620126178
  65. M. A. Einarsrud, E. Nilsen, A. Rigacci, G. M. Pajonk, S. Buathier, D. Valette, M. Durant, B. Cevalier, P. Nitz, and F. E. Dolle, "Strengthening of Silica Gels and Aerogels by Washing and Aging Processes," J. Nom-Cryst. Solids., 285 [1] 1-7 (2001). https://doi.org/10.1016/S0022-3093(01)00423-9
  66. R. A. Strom, Y. Masmoudi, A. Rigacci, G. Petermann, L. Gulberg, B. Chevalier, and M .A. Einarsrud, "Strengthening and Aging of Wet Silica Gels for Up-Scaling of Aerogel Preparation," J. Sol-Gel Sci. Technol., 41 [3] 291-98 (2007). https://doi.org/10.1007/s10971-006-1505-7
  67. D. Y. Nadargi, S. S. Latthe, H. Hirashima, and A. V. Rao, "Studies on Rheological Properties of Methyltriethoxysilane (MTES) Based Flexible Superhydrophobic Silica Aerogels," Microporous Mesoporous Mater., 117 [3] 617-26 (2009). https://doi.org/10.1016/j.micromeso.2008.08.025
  68. T. Asefa, M. J. MacLahlan, N. Coombs, and G. A. Ozin, "Periodic Mesoporous Organosilicas with Organic Groups inside the Channel Walls," Nature, 402 [6764] 867-71 (1999). https://doi.org/10.1038/47229
  69. P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche, and F. J. Romero-Salguero, "Periodic Mesoporous Organosilicas: from Simple to Complex Bridges; A Comprehensive Overview of Functions, Morphologies and Applications," Chem. Soc. Rev., 42 [9] 3913-55 (2013). https://doi.org/10.1039/C2CS35222B
  70. T. J. Ha, H. G. Im, S. J. Yoon, H. W. Jang, and H. H. Park, "Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants," J. Nanomater., 2011 [3] 326472 (2011).
  71. K. Kanamori, Y. Kodera, G. Hayase, K. Nakanishi, and T. Halanda, "Transition from Transparent Aerogels to Hierarchically Porous Monoliths in Polymethylsilsesquioxane So-Gel System," J. Colloid Interface Sci., 357 [2] 336-44 (2011). https://doi.org/10.1016/j.jcis.2011.02.027
  72. K. Kanamori, M. Aizawa, K. Nakanishi, and T. Hanada, "New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Properties," Adv. Mater., 19 [12] 1589-93 (2007). https://doi.org/10.1002/adma.200602457
  73. M. Kurahashi, K. Kanamori, K. Takeda, H. Kaji, and K. Nakanishi, "Role of Block Copolymer Surfactant on the Pore Formation in Methylsilsesquioxane Aerogel Systems," RSC Adv., 2 [18] 7166-73 (2012). https://doi.org/10.1039/c2ra20799k
  74. K. Kanamori, G. Hayase, K. Nakanishi, and T. Hanada, "Pore Structure and Mechanical Properties of Poly(Methylsilsesquioxane) Aerogels," IOP Conf. Ser.: Mater. Sci. Eng., 18 [3] 032001 (2011).
  75. A. V. Rao, S. D. Bhagat, H. Hirashima, and G. M. Pajonk, "Synthesis of Flexible Silica Aerogels Using Methyltrimethoxysilane (MTMS) Precursor," J. Colloid Interface Sci., 300 [1] 179-285 (2006).
  76. D. B. Mahadik, Y. K. Lee, N. K. Chavan, S. A. Mahadik, and H. H. Park, "Monolithic and Shrinkage-free Hydrophobic Silica Aerogels via New rapid Supercritical Extraction Process," J. Supercrit. Fluids, 107 84-91 (2016). https://doi.org/10.1016/j.supflu.2015.08.020
  77. C. A. Garcia-Gonzalez, M. C. Camino-Rey, M. Alnaief, C. Zetzl, and I. Smirnova, "Supercritical Drying of Aerogels Using $CO_2$: Effect of Extraction Time on the End Material Textural Properties," J. Supercit. Fluids, 66 297-306 (2012). https://doi.org/10.1016/j.supflu.2012.02.026
  78. M. S. Kavale, D. B. Mahadik, V. G. Parale, A. V. Rao, P. B. Wagh, and S. C. Gupta, "Methyltrimethoxysilane Based Flexible Silica Aerogels for Oil Absorption Applications," AIP Conf. Proceedings, 1447 [1] 1283 (2012).
  79. D. Y. Nadargi and A. V. Rao, "Methyltriethoxysilane: New Precursor for Synthesizing Silica Aerogels," J. Alloys Compd., 467 [1] 397-404 (2009). https://doi.org/10.1016/j.jallcom.2007.12.019
  80. P. B. Wagh, R. Begag, G. M. Pajonk, A. V. Rao, and D. Haranath, "Comparison of Some Physical Properties of Silica Aerogel Monoliths Synthesized by Different Precursors," Mater. Chem. Phys., 57 [3] 214-18 (1999). https://doi.org/10.1016/S0254-0584(98)00217-X
  81. P. B. Wagh, A. V. Rao, and D. Haranath, "Influence of Catalyst (Citric Acid) Concentration on the Physical Properties of Teos Silica Aerogels," J. Porous Mater., 4 [4] 295-301 (1997). https://doi.org/10.1023/A:1009633524487
  82. L. Kocon, F. Despetis, and J. Phalippou, "Ultralow Density Silica Aerogels by Alcohol Supercritical Drying," J. Non-Cryst. Solids, 22 596-100 (1998).
  83. D. A. Loy, E. M. Russick, S. A. Yamanaka, and B. M. Baugher, "Direct Formation of Aerogels by Sol-Gel Polymerizations of Alkoxysilanes in Supercritical Carbon Dioxide", Chem. Mater., 9 [11] 2264-68 (1997). https://doi.org/10.1021/cm970326f
  84. I. Lazar and I. Fabian, "A Continuous Extraction and Pumpless Supercritical $CO_2$ Drying System for Laboratory-Scale Aerogel Production," Gels, 2 [4] 26 (2016). https://doi.org/10.3390/gels2040026
  85. N. D. Hegde and A. V. Rao, "Organic Modification of TEOS Based Silica Aerogels Using Hexadecyltrimethoxysilane as a Hydrophobic Reagent," Appl. Surf. Sci., 253 [3] 1566-72 (2006). https://doi.org/10.1016/j.apsusc.2006.02.036
  86. D. B. Mahadik, A. V. Rao, P. B. Wagh, and S. C. Gupta, "Synthesis of Transparent and Hydrophobic TMOS Based Silica Aerogels," AIP Conf. Proceedings, 1536 [1] 553 (2013).
  87. D. B. Mahadik, H. N. R. Jung, Y. K. Lee, K. Y. Lee, and H. H. Park, "Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-Step Sol-Gel Process," J. Microelectron. Packeg. Soc., 23 [1] 35-9 (2016).
  88. S. A. Mahadik, V. G. Parale, R. S. Vhatkar, D. B. Mahdik, M. S. Kavale, P. B. Wagh, S. C. Gupta, and J. L. Gurav, "Superhydrophobic Silica Coating by Dip Coating Method," Appl. Surf. Sci., 277 67-72 (2013). https://doi.org/10.1016/j.apsusc.2013.04.001
  89. K. Kanamori and K. Nakanishi, "Controlled Pore Formation in Organotrialkoxysilane-Derived Hybrids: from Aerogels to Hierarchically Porous Monoliths," Chem. Soc. Rev., 40 [2] 754-70 (2011). https://doi.org/10.1039/C0CS00068J
  90. G. Hayase, K. Kanamori, K. Kazuki, and T. Hanada, "Synthesis of New Flexible Aerogels from MTMS/DMDMS via Ambient Pressure Drying," IOP Conf. Ser.: Mater. Sci. Eng., 18 [3] 032013 (2011).
  91. M. Du, N. Mao, and S. J. Russell, "Control of Porous Structure in Flexible Silicone Aerogels Produced from Methyltrimethoxysilane (MTMS): the Effect of Precursor Concentration in Sol-Gel Solutions," J. Mater. Sci., 51 [2] 719-31 (2016). https://doi.org/10.1007/s10853-015-9378-1
  92. T. Matias, C. Varino, H. C. de Sousa, M. E. M. Braga, A. Portugal, J. F. J. Coelho, and L. Duraes, "Novel Flexible, Hybrid Aerogels with Vinyl and Methyltrimethoxysilane in the Underlying Silica Structure," J. Mater. Sci., 51 [14] 6781-92 (2016). https://doi.org/10.1007/s10853-016-9965-9
  93. P. R. Aravind, P. Niemeyer, and L. Ratke, "Novel Flexible Aerogels Derived from Methyltrimethoxysilane/3-(2,3-epoxypropoxy)Propyltrimethoxysilane Co-Precursor," Microporous Mesoporous Mater., 181 111-15 (2013). https://doi.org/10.1016/j.micromeso.2013.07.025
  94. T. L. Metroke, R. L. Parkhil, and E. T. Knobbe, "Passivation of Metal Alloys Using Sol-Gel-Derived Materials − A Review," Prog. Org. Coat., 41 [4] 233-38 (2001). https://doi.org/10.1016/S0300-9440(01)00134-5
  95. L. M. Rueda, C. Nieves, C. A. Hernandez Barrios, A. E. Coy, and F. Viejo, "Design of TEOS-GPTMS Sol-Gel Coatings on Rare-Earth Magnesium Alloys Employed in the Manufacture of Orthopaedic Implants," J. Phys.: Conf. Ser., 687 012013 (2016). https://doi.org/10.1088/1742-6596/687/1/012013
  96. S. Kim, A. Cho, S. Kim, W. Cho, M. H. Chung, F. S. Kim, and J. H. Kim, "Multi-Purpose Overcoating Layers Based on PVA/Silane Hybrid Composites for Highly Transparent, Flexible, and Durable AgNW/PEDOT:PSS Films," RSC Adv., 6 [23] 19280-87 (2016). https://doi.org/10.1039/C5RA27311K
  97. L. Zhong, X. Chen, H. Song, K. Guo, and Z. Hu, "Highly Flexible Silica Aerogels Derived from Methyltriethoxysilane and Polydimethylsiloxane," New J. Chem., 39 [10] 7832-38 (2015). https://doi.org/10.1039/C5NJ01477H
  98. Z. Li, L. Gong, X. Cheng, S. He, C. Li, and H. Zhang, "Flexible Silica Aerogel Composites Strengthened with Aramid Fibers and their Thermal Behavior," Mater. Design, 99 349-55 (2016). https://doi.org/10.1016/j.matdes.2016.03.063
  99. M. Shi, C. Tang, X. Yang, J. Zhou, F. Jia, Y. Han, and Z. Li, "Superhydrophobic Silica Aerogels Reinforced with Polyacrylonitrile Fibers for Adsorbing Oil from Water and Oil Mixtures," RSC Adv., 7 [7] 4039-45 (2017). https://doi.org/10.1039/C6RA26831E
  100. X. Yang, Y. Sun, D. Shi, and J. Liu, "Experimental Investigation on Mechanical Properties of a Fiber-Reinforced Silica Aerogel Composite," Mater. Sci. Eng., A, 528 [13] 4830-36 (2011). https://doi.org/10.1016/j.msea.2011.03.013
  101. S. A. Mahadik, D. B. Mahadik, M. S. Kavale, V. G. Parale, P. B. Wagh, H. C. Barshilia, S. C. Gupta, N. D. Hegde, and A. V. Rao, "Thermally Stable and Transparent Superhydrophobic Sol-Gel Coatings by Spray Method," J. Sol-Gel Sci. Technol., 63 [3] 580-86 (2012). https://doi.org/10.1007/s10971-012-2798-3
  102. Y. Yu, X. Wu, D. Guo, and J. Fang, "Preparation of Flexible, Hydrophobic, and Oleophilic Silica Aerogels Based on a Methyltriethoxysilane Precursor," J. Mater. Sci., 49 [22] 7715-22 (2014). https://doi.org/10.1007/s10853-014-8480-0
  103. S. A. Mahadik, D. B. Mahadik, V. G. Parale, P. B. Wagh, S. C. Gupta, and A. V. Rao, "Recoverable and Thermally Stable Superhydrophobic Silica Coating," J. Sol-Gel Sci. Technol., 62 [3] 490-94 (2012). https://doi.org/10.1007/s10971-012-2753-3
  104. S. A. Mahadik, F. D. Pedraza, B. P. Relekar, V. G. Parale, G. M. Lohar, and S. S. Thorat, "Synthesis and Characterization of Superhydrophobic-Superoleophilic Surface," J. Sol-Gel Sci. Technol., 78 [3] 475-81 (2016). https://doi.org/10.1007/s10971-016-3974-7
  105. N. D. Hegde and A. V. Rao, "Physical Properties of Methyltrimethoxysilane Based Elastic Silica Aerogels Prepared by the Two-Stage Sol-Gel Process," J. Mater. Sci., 42 [16] 6965-71 (2007). https://doi.org/10.1007/s10853-006-1409-5
  106. W. J. Malfait, S. Zhao, R. Verel, S. Iswar, D. Rentsch, R. Fener, Y. Zhang, B. Milow, and M. M. Koebel, "Surface Chemistry of Hydrophobic Silica Aerogels," Chem. Mater., 27 [19] 6737-45 (2015).
  107. A. V. Rao and R. R. Kalesh, "Comparative Studies of the Physical and Hydrophobic Properties of TEOS Based Silica Aerogels Using Different Co-Precursors," Sci. Technol. Adv. Mater., 4 [6] 509-15 (2003). https://doi.org/10.1016/j.stam.2003.12.010
  108. A. V. Rao, R. R. Kalesh, and G. M. Pajonk, "Hydrophobicity and Physical Properties of TEOS Based Silica Aerogels Using Phenyltriethoxysilane as a Synthesis Component," J. Mater. Sci., 38 [21] 4407-13 (2003). https://doi.org/10.1023/A:1026311905523
  109. K. Kanamori, "Organic-Inorganic Hybrid Aerogels with High Mechanical Properties via Organotrialkoxysilane-Derived Sol-Gel Process," J. Ceram. Soc. Jpn, 119 [1385] 16-22 (2011). https://doi.org/10.2109/jcersj2.119.16
  110. V. G. Parale, D. B. Mahadik, S. A. Mahadik, M. S. Kavale, P. B. Wagh, S. C. Gupta, and A. V. Rao, "OTES Modified Transparent Dip Coated Silica Coatings," Ceram. Int., 39 [1] 835-40 (2013). https://doi.org/10.1016/j.ceramint.2012.05.079
  111. G. Hayase, K. Kanamori, K. Abe, H. Yano, A. Maeno, H. Kaji, and K. Nakanishi, "Polymethylsilsesquioxane-Cellulose Nanofiber Biocomposite Aerogels with High Thermal Insulation, Bendability, and Superhydrophobicity," ACS Appl. Mater. Interfaces, 6 [12] 9466-71 (2014). https://doi.org/10.1021/am501822y
  112. M. Paakko, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindstrom, L. Berglund, and O. Ikkala, "Long and Entangled Native Cellulose Nanofibers Allow Flexible Aerogels and Hierarchically Porous Templates for Functionalities," Soft Matter, 4 [12] 2492-99 (2008). https://doi.org/10.1039/b810371b
  113. I. Siro and D. Plackett, "Microfibrillated Cellulose and New Nanocomposite Materials: A Review," Cellulose, 17 [3] 459-94 (2010). https://doi.org/10.1007/s10570-010-9405-y
  114. M. Nogi and H. Yano, "Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry," Adv. Mater., 20 [10] 1849-52 (2008). https://doi.org/10.1002/adma.200702559
  115. H. Wu, Y. Chen, Q. Chen, Y. Ding, X. Zhou, and H. Gao, "Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation," J. Nanomater., 2013 10 (2013).
  116. K. Kanamori, "Liquid-Phase Synthesis and Application of Monolithic Porous Materials Based on Organic-Inorganic Hybrid Methylsiloxanes, Crosslinked Polymers and Carbons," J. Sol-Gel Sci. Technol., 65 [1] 12-22 (2013). https://doi.org/10.1007/s10971-011-2662-x
  117. S. Alexander, "Vibrations of Fractals and Scattering of Light from Aerogels," Phys. Rev. B, 40 [11] 7953-65 (1989). https://doi.org/10.1103/PhysRevB.40.7953
  118. W. Cao and A. J. Hunt, "Improving the Visible Transparency of Silica Aerogels," J. Non-Cryst. Solids, 176 [1] 18-25 (1994). https://doi.org/10.1016/0022-3093(94)90206-2
  119. S. Yun, H. Luo, and Y. Gao, "Ambient-Pressure Drying Synthesis of Large Resorcinol-Formaldehyde-Reinforced Silica Aerogels with Enhanced Mechanical Strength and Superhydrophobicity," J. Mater. Chem. A, 2 [35] 14542-49 (2014). https://doi.org/10.1039/C4TA02195A
  120. D. A. Loy and K. J. Shea, "Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials," Chem. Rev., 95 [5] 1431-22 (1995). https://doi.org/10.1021/cr00037a013
  121. D. Lin, L. Hu, S. H. Tolbert, Z. Li, and D. A. Loy, "Controlling Nanostructure in Periodic Mesoporous Hexylene-Bridged Polysilsesquioxanes," J. Non-Cryst. Solids, 419 6-11 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.03.010
  122. F. Zou, P. Yue, X. Zheng, D. Tang, W. Fu, and Z. Li, "Robust and Superhydrophobic Thiourethane Bridged Polysilsesquioxane Aerogels as Potential Thermal Insulation Materials," J. Mater. Chem. A, 4 [28] 10801-5 (2016). https://doi.org/10.1039/C6TA03531K
  123. D. J. Boday, R. J. Stover, B. Muriithi, and D. A. Loy, "Mechanical Properties of Hexylene- and Phenylene-Bridged Polysilsesquioxane Aerogels and Xerogels," J. Sol-Gel Sci. Technol., 61 144-50 (2012). https://doi.org/10.1007/s10971-011-2603-8
  124. D. B. Mahadik, A. V. Rao, A. P. Rao, P. B. Wagh, S. V. Ingle, and S. C. Gupta, "Effect of Concentration of Trimethylchlorosilane (TMCS) and Hexamethyldisilazane (HMDZ) Silylating Agents on Surface Free Energy of Silica Aerogels," J. Colloid Interface Sci., 356 [1] 298-302 (2011). https://doi.org/10.1016/j.jcis.2010.12.088
  125. H. Maleki, L. Duraes, and A. Portugal, "Synthesis of Mechanically Reinforced Silica Aerogels via Surface-Initiated Reversible Additionfragmentation Chain Transfer (RAFT) Polymerization," J. Mater. Chem. A, 3 1594-600 (2015). https://doi.org/10.1039/C4TA05618C
  126. B. N. Nguyen, M. A. B. Meador, M. E. Tousley, B. Shonkwiler, L. McCorkie, D. A. Scheiman, and A. Palczer, "Tailoring Elastic Properties of Silica Aerogels Cross-Linked with Polystyrene," ACS Appl. Mater. Interfaces, 1 [3] 621-30 (2009). https://doi.org/10.1021/am8001617
  127. H. Guo, B. N. Nguyen, L. S. McCorkie, B. Shonwalker, and M. A. B. Meador, "Elastic Low Density Aerogels Derived from Bis[3-(Triethoxysilyl)Propyl]Disulfide, Tetramethylorthosilicate and Vinyltrimethoxysilane via a Two-Step Process," J. Mater. Chem., 19 [47] 9054-62 (2009). https://doi.org/10.1039/b916355g
  128. C. R. Ehgartner, S. Grandl, A. Feinle, and N. Husing, "Fexible Organofunctional Aerogels," Dalton Trans., DOI: 10.1039/c7dt00558j (2017).
  129. L. Jiang, K. Kato, K. Mayumi, H. Yokoyama, and K. Ito, "One-Pot Synthesis and Characterization of Polyrotaxane-Silica Hybrid Aerogel," ACS Macro Lett., 6 [3] 281-86 (2017). https://doi.org/10.1021/acsmacrolett.7b00014
  130. D. B. Mahadik, H. N. R. Jung, W. Han, H. H. Cho, and H. H. Park, "Flexible, Elastic, and Superhydrophobic Silica-Polymer Composite Aerogels by High Internal Phase Emulsion Process," Compos. Sci. Technol., 147 45-51 (2017). https://doi.org/10.1016/j.compscitech.2017.04.036
  131. O. Karatum, S. A. Steiner, J. S. Griffin, W. Shi, and D. L. Plata, "Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery," ACS Appl. Mater. Interfaces, 8 [1] 215-24 (2016). https://doi.org/10.1021/acsami.5b08439
  132. K. Y. Lee, H. N. R. Jung, D. B. Mahadik, and H. H. Park, "Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer," J. Microelectron. Packag. Soc., 23 [3] 15-20 (2016). https://doi.org/10.6117/kmeps.2016.23.3.015
  133. R. Baetens, B. P. Jelle, and A. Gustavsen, "Aerogel Insulation for Building Applications: A State-of-the-Art Review," Energy Build., 43 [4] 761-69 (2011). https://doi.org/10.1016/j.enbuild.2010.12.012
  134. B. E. Coffman, J. E. Fesmire, S. White, G. Gould, and S. Augustynowicz, "Aerogel Blanket Insulation Materials for Cryogenic Applications," AIP Conf. Proceeding, 1218 [1] 913-20 (2010).
  135. S. B. Riffat and G. Qiu, "A Review of State-of-the-Art Aerogel Applications in Buildings," Int. J. Low-Carbon Technol., 8 [1] 1-6 (2013). https://doi.org/10.1093/ijlct/cts001
  136. http://www.aerogel.com/_resources/common/userfiles/file/SDS-AIS/Spaceloft_SDS.pdf Accessed on 18/03/2017.
  137. Q. Zhou, Y. Shen, S. Ai, B. Liu, and Y. Zhao, "Transparent Aerogels with High Mechanical Strength Composed of Cellulose-Silica Cross-Linked Networks," MATEC Web Conf., 64 050001 (2016).
  138. B. N. Nguyen, M. A. B. Meador, A. Meodoro, V. Arendt, J. Randall, L. McCorkie, and B. Shonwiler, "Elastic Behavior of Methyltrimethoxysilane Based Aerogels Reinforced with Tri-Isocyanate," ACS Appl. Mater. Interfaces, 2 [5] 1450-45 (2010).

Cited by

  1. Role of oxalic acid in structural formation of sodium silicate-based silica aerogel by ambient pressure drying pp.1573-4846, 2018, https://doi.org/10.1007/s10971-017-4553-2
  2. Synthesis of silica aerogel thin sheets and evaluation of its thermal, electrical, and mechanical properties pp.1546542X, 2018, https://doi.org/10.1111/ijac.13125
  3. Fabrication of PEO-PMMA-LiClO4-Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries vol.11, pp.10, 2018, https://doi.org/10.3390/en11102559
  4. Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent vol.87, pp.2, 2018, https://doi.org/10.1007/s10971-018-4729-4
  5. Vacuum-dried flexible hydrophobic aerogels using bridged methylsiloxane as reinforcement: performance regulation with alkylorthosilicate or alkyltrimethoxysilane co-precursors vol.43, pp.5, 2019, https://doi.org/10.1039/C8NJ04038A
  6. Origin of Flexibility of Organic-Inorganic Aerogels: Insights from Atomistic Simulations vol.122, pp.35, 2017, https://doi.org/10.1021/acs.jpcc.8b06409
  7. Directly ambient pressure dried robust bridged silsesquioxane and methylsiloxane aerogels: effects of precursors and solvents vol.9, pp.15, 2019, https://doi.org/10.1039/c8ra08646j
  8. Nanoindentation of Graphene-Reinforced Silica Aerogel: A Molecular Dynamics Study vol.24, pp.7, 2017, https://doi.org/10.3390/molecules24071336
  9. Relation between Microstructure and Flexibility of Doubly Cross-Linked Organic-Inorganic Aerogels vol.1, pp.5, 2017, https://doi.org/10.1021/acsapm.9b00144
  10. AC-STEM and HRSEM Investigation of Silica Nanoparticle Film Structure vol.25, pp.2, 2017, https://doi.org/10.1017/s1431927619010778
  11. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications vol.7, pp.40, 2017, https://doi.org/10.1039/c9ta04811a
  12. On the unusual amber coloration of nanoporous sol-gel processed Al-doped silica glass: An experimental study vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-48917-4
  13. Physicochemical properties of ambient pressure dried surface modified silica aerogels: effect of pH variation vol.2, pp.4, 2017, https://doi.org/10.1007/s42452-020-2463-3
  14. Bismaleimide bridged silsesquioxane aerogels with excellent heat resistance: effect of sol-gel solvent polarity vol.16, pp.14, 2017, https://doi.org/10.1039/d0sm00029a
  15. Uniformly Structured Methyltrimethoxysilane-Based Silica Aerogels with Enhanced Mechanical Property by Surfactant-Free Fabrication vol.19, pp.3, 2017, https://doi.org/10.1142/s0219581x19500170
  16. Hybrid Aerogel Nanocomposite of Dendritic Colloidal Silica and Hairy Nanocellulose: an Effective Dye Adsorbent vol.36, pp.40, 2017, https://doi.org/10.1021/acs.langmuir.0c02090
  17. Comparisonal studies of surface modification reaction using various silylating agents for silica aerogel vol.96, pp.2, 2017, https://doi.org/10.1007/s10971-020-05399-5
  18. Investigation of Aerogel Production Processes: Solvent Exchange under High Pressure Combined with Supercritical Drying in One Apparatus vol.7, pp.1, 2017, https://doi.org/10.3390/gels7010004
  19. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook vol.13, pp.8, 2017, https://doi.org/10.3390/polym13081347
  20. Preparation, Surface Characterization, and Water Resistance of Silicate and Sol-Silicate Inorganic-Organic Hybrid Dispersion Coatings for Wood vol.14, pp.13, 2017, https://doi.org/10.3390/ma14133559
  21. Self-assembly of the cationic surfactant n-hexadecyl-trimethylammonium chloride in methyltrimethoxysilane aqueous solution: classical and reactive molecular dynamics simulations vol.23, pp.26, 2017, https://doi.org/10.1039/d1cp01462e