DOI QR코드

DOI QR Code

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung (Department of Nano Applied Engineering, Kangwon National University) ;
  • Kim, Sung Wng (Department of Energy Science, Sungkyunkwan University)
  • Received : 2017.02.20
  • Accepted : 2017.03.02
  • Published : 2017.03.31

Abstract

Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

Keywords

References

  1. BCS, Waste Heat Recovery: Technology and Opportunities in U.S. Industry Engineering Scoping Study; pp. 13, U.S. Department of Energy, Industrial Technologies Program, 2008.
  2. T. Ochi, G. Nie, S. Suzuki, M. Kikuchi, S. Ito, and J. Q. Guo, "Power-Generation Performance and Durability of a Skutterudite Thermoelectric Generator," J. Electron. Mater., 43 [6] 2344-47 (2014). https://doi.org/10.1007/s11664-014-3060-2
  3. J. R. Salvador, J. Y. Cho, Z. Ye, J. E. Moczygemba, A. J. Thompson, J. W. Sharp, J. D. Koenig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, and A. A. Wereszczak, "Conversion Efficiency of Skutterudite-Based Thermoelectric Modules," Phys. Chem. Chem. Phys., 16 [24] 12510-20 (2014). https://doi.org/10.1039/C4CP01582G
  4. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, "Realizing High Figure of Merit in Heavy-Band P-Type Half-Heusler Thermoelectric Materials," Nat. Commun., 6 8144 (2015). https://doi.org/10.1038/ncomms9144
  5. Q. H. Zhang, X. Y. Huang, S. Q. Bai, X. Shi, C. Uher, and L. D. Chen, "Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges," Adv. Eng. Mater., 18 [2] 194-213 (2016). https://doi.org/10.1002/adem.201500333
  6. X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M. G. Kanatzidis, and A. Yamamoto, "Power Generation from Nanostructured PbTe-Based Thermoelectrics: Comprehensive Development from Materials to Modules," Energy Environ. Sci., 9 [2] 517-29 (2016). https://doi.org/10.1039/C5EE02979A
  7. P. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G. J. Snyder, and L. Chen, "Skutterudite with Graphene-Modified Grain-Boundary Complexion Enhances zT Enabling High-Efficiency Thermoelectric Device," Energy Environ. Sci., 10 183-91 (2017). https://doi.org/10.1039/C6EE02467J
  8. C. B. Vining, "An Inconvenient Truth about Thermoelectrics," Nat. Mater., 8 [2] 83-5 (2009). https://doi.org/10.1038/nmat2361
  9. G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7 [2] 105-14 (2008). https://doi.org/10.1038/nmat2090
  10. M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, "Electronic Transport in Semimetallic Cerium Sulfide," Phys. Rev., 133 [4A] A1143-52 (1964). https://doi.org/10.1103/PhysRev.133.A1143
  11. C. M. Bhandari and D. M. Rowe, "Optimization of Carrier Concentration," pp. 43-53 in CRC Handbook of Thermoelectrics. Ed. By D. M. Rowe, CRC Press, Boca Raton, 1995.
  12. H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, "Characterization of Lorenz Number with Seebeck Coefficient Measurement," APL Mater., 3 [4] 041506 (2015). https://doi.org/10.1063/1.4908244
  13. G. A. Slack, "New Materials and Performance Limits for Thermoelectric Cooling," pp. 407-40 in CRC Handbook of Thermoelectrics. Ed. By D. M. Rowe, CRC Press, Boca Raton, 1995.
  14. J. Callaway and H. C. von Baeyer, "Effect of Point Imperfections on Lattice Thermal Conductivity," Phys. Rev., 120 [4] 1149 (1960). https://doi.org/10.1103/PhysRev.120.1149
  15. B. Abeles, "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures," Phys. Rev., 131 [5] 1906 (1963). https://doi.org/10.1103/PhysRev.131.1906
  16. K. H. Lee, S. M. Choi, J. W. Roh, S. Hwang, S. I. Kim, W. H. Shin, H. J. Park, J. H. Lee, S. W. Kim, and D. J. Yang, "Enhanced Thermoelectric Performance of P-Type Bi-Sb-Te Alloys by Codoping with Ga and Ag," J. Electron. Mater., 44 [6] 1531-35 (2015). https://doi.org/10.1007/s11664-014-3446-1
  17. H. J. Goldsmid, "Recent Studies of Bismuth Telluride and Its Alloys," J. Appl. Phys., 32 [10] 2198-202 (1961). https://doi.org/10.1063/1.1777042
  18. G. Meisner, D. Morelli, S. Hu, J. Yang, and C. Uher, "Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members," Phys. Rev. Lett., 80 [16] 3551 (1998). https://doi.org/10.1103/PhysRevLett.80.3551
  19. Y. Pei, H. Wang, and G. J. Snyder, "Band Engineering of Thermoelectric Materials," Adv. Mater., 24 [46] 6125-35 (2012). https://doi.org/10.1002/adma.201202919
  20. G. Tan, F. Shi, S. Hao, L. D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Non-Equilibrium Processing Leads to Record High Thermoelectric Figure of Merit in PbTe-SrTe," Nat. Commun., 7 12167 (2016). https://doi.org/10.1038/ncomms12167
  21. L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "All-Scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance," Energy Environ. Sci., 6 [11] 3346- 55 (2013). https://doi.org/10.1039/c3ee42187b
  22. Y. Pei, A. D. LaLonde, N. A. Heinz, and G. J. Snyder, "High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe-CdTe," Adv. Energy Mater., 2 [6] 670-75 (2012). https://doi.org/10.1002/aenm.201100770
  23. X. Liu, T. Zhu, H. Wang, L. Hu, H. Xie, G. Jiang, G. J. Snyder, and X. Zhao, "Low Electron Scattering Potentials in High Performance $Mg_2Si_{0.45}Sn_{0.55}$ Based Thermoelectric Solid Solutions with Band Convergence," Adv. Energy Mater., 3 [9] 1238-44 (2013). https://doi.org/10.1002/aenm.201300174
  24. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, "Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of N-type $Mg_{2-}Si_{1-x}Sn_x$ Solid Solutions," Phys. Rev. Lett., 108 [16] 166601 (2012). https://doi.org/10.1103/PhysRevLett.108.166601
  25. G. Tan, F. Shi, J. W. Doak, H. Sun, L. D. Zhao, P. Wang, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Extraordinary Role of Hg in Enhancing the Thermoelectric Performance of P-Type SnTe," Energy Environ. Sci., 8 [1] 267-77 (2015). https://doi.org/10.1039/C4EE01463D
  26. G. Tan, F. Shi, S. Hao, H. Chi, T. P. Bailey, L. D. Zhao, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe," J. Am. Chem. Soc., 137 [35] 11507-16 (2015). https://doi.org/10.1021/jacs.5b07284
  27. A. Banik, U. S. Shenoy, S. Anand, U. V. Waghmare, and K. Biswas, "Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties," Chem. Mater., 27 [2] 581-87 (2015). https://doi.org/10.1021/cm504112m
  28. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008). https://doi.org/10.1126/science.1159725
  29. C. M. Jaworski, V. Kulbachinskii, and J. P. Heremans, "Resonant Level Formed by Tin in $Bi_2Te_3$ and the Enhancement of Room-Temperature Thermoelectric Power," Phys. Rev. B, 80 [23] 233201 (2009). https://doi.org/10.1103/PhysRevB.80.233201
  30. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Z. Ren, "High Thermoelectric Performance by Resonant Dopant Indium in Nanostructured SnTe," Proc. Natl. Acad. Sci. U. S. A., 110 [33] 13261-66 (2013). https://doi.org/10.1073/pnas.1305735110
  31. J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, and D. J. Singh, "On the Tuning of Electrical and Thermal Transport in Thermoelectrics: An Integrated Theory-Experiment Perspective," npj Comput. Mater., 2 15015 (2016). https://doi.org/10.1038/npjcompumats.2015.15
  32. B. Ryu and M. W. Oh, "Computational Simulations of Thermoelectric Transport Properties," J. Korean Ceram. Soc., 53 [3] 273-81 (2016). https://doi.org/10.4191/kcers.2016.53.3.273
  33. G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, "BoltzWann: A Code for the Evaluation of Thermoelectric and Electronic Transport Properties with a Maximally- Localized Wannier Functions Basis," Comp. Phys. Comm., 185 [1] 422-29 (2014). https://doi.org/10.1016/j.cpc.2013.09.015
  34. P. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. Jia, and G. Zou, "Enhanced Thermoelectric Properties of PbTe Alloyed with $Sb_2Te_3$," J. Phys.: Condens. Matter, 17 [46] 7319-26 (2005). https://doi.org/10.1088/0953-8984/17/46/015
  35. B. Abeles, D. S. B. Beers, G. D. Cody, and J. P. Dismukes, "Thermal Conductivity of Ge-Si Alloys at High Temperatures," Phys. Rev., 125 [1] 44-6 (1962). https://doi.org/10.1103/PhysRev.125.44
  36. J. L. Feldman, D. J. Singh, I. I. Mazin, D. Mandrus, and B. C. Sales, "Lattice Dynamics and Reduced Thermal Conductivity of Filled Skutterudites," Phys. Rev. B, 61 [14] R9209- 12 (2000). https://doi.org/10.1103/PhysRevB.61.R9209
  37. B. C. Sales, D. Mandrus, and R. K. Williams, "Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials," Science, 272 [5266] 1325-28 (1996). https://doi.org/10.1126/science.272.5266.1325
  38. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, "Dense Dislocation Arrays Embedded in Grain Boundaries for High-Performance Bulk Thermoelectrics," Science, 348 [6230] 109-14 (2015). https://doi.org/10.1126/science.aaa4166
  39. H. J. Goldsmid and A. W. Penn, "Boundary Scattering of Phonons in Solid Solutions," Phys. Lett. A, 27 [8] 523-24 (1968). https://doi.org/10.1016/0375-9601(68)90898-0
  40. J. He, S. N. Girard, M. G. Kanatzidis, and V. P. Dravid, "Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured $PbTe_{0.7}S_{0.3}$ Thermoelectric Materials," Adv. Funct. Mater., 20 [5] 764-72 (2010). https://doi.org/10.1002/adfm.200901905
  41. L. D. Zhao, V. P. Dravid, and M. G. Kanatzidis, "The Panoscopic Approach to High Performance Thermoelectric," Energy Environ. Sci., 7 [1] 251-68 (2014). https://doi.org/10.1039/C3EE43099E
  42. W. Liu, X. Yan, G. Chen, and Z. Ren, "Recent Advanced in Thermoelectric Nanocomposites," Nano Energy, 1 [1] 42-56 (2012). https://doi.org/10.1016/j.nanoen.2011.10.001
  43. Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach," Adv. Funct. Mater., 20 [3] 357-76 (2010). https://doi.org/10.1002/adfm.200901512
  44. D. L. Medlin and G. J. Snyder, "Interfaces in Bulk Thermoelectric Materials," Curr. Opin. Colloid Interface Sci., 14 [4] 226-35 (2009). https://doi.org/10.1016/j.cocis.2009.05.001
  45. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, "Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-type $Bi_2Te_{2.7}Se_{0.3}$," Nano Lett., 10 [9] 93373-78 (2010).
  46. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, "Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks," Nano Lett., 8 [8] 2580-84 (2008). https://doi.org/10.1021/nl8009928
  47. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science, 320 [5876] 634-38 (2008). https://doi.org/10.1126/science.1156446
  48. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit," Nat. Chem., 3 160-66 (2011). https://doi.org/10.1038/nchem.955
  49. J. Androulakis, C. H. Lin, H. J. Kong, C. Uher, C. I. Wu, T. Hogan, B. A. Cook, T. Caillat, K. M. Paraslevopoulos, and M. G. Kanatzidis, "Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics: Enhanced Performance in $Pb_{1-x}Sn_xTe-PbS$," J. Am. Chem. Soc., 129 [31] 9780-88 (2007). https://doi.org/10.1021/ja071875h
  50. H. Li, X. Tang, X. Su, and Q. Zhang, "Preparation and Thermoelectric Properties of High-Performance Sb Additional $Yb_{0.2}Co_4Sb_{12+y}$ Bulk Materials with Nanostructure," Appl. Phys. Lett., 92 [20] 202114 (2008). https://doi.org/10.1063/1.2936277
  51. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, "Enhanced Thermoelectric Figure of Merit of p-type Half- Heuslers," Nano Lett., 11 [2] 556-60 (2011). https://doi.org/10.1021/nl104138t
  52. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, "Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys," Nano Lett., 8 [12] 4670-74 (2008). https://doi.org/10.1021/nl8026795
  53. X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. Ren, "Enhanced Thermoelectric Figure of Merit in Nanostructured n-type Silicon Germanium Bulk Alloy," Appl. Phys. Lett., 93 [19] 193121 (2008). https://doi.org/10.1063/1.3027060
  54. X. Yang, J. Carrete, and Z. Wang, "Role of Force-Constant Difference in Phonon Scattering by Nano-Precipitates in PbTe," J. Appl. Phys., 118 [8] 085701 (2015). https://doi.org/10.1063/1.4928811
  55. S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, "Metal Nanoparticle Decorated n-type $Bi_2Te_3$-Based Materials with Enhanced Thermoelectric Performances," Nanotechnology, 24 [28] 285702 (2013). https://doi.org/10.1088/0957-4484/24/28/285702
  56. S. Hwang, S. I. Kim, K. Ahn, J. W. Roh, D. J. Yang, S. M. Lee, and K. H. Lee, "Enhancing the Thermoelectric Properties of p-type Bulk Bi-Sb-Te Nanocomposites via Solution- Based Metal Nanoparticle Decoration," J. Electron. Mater., 42 [7] 1411-16 (2013). https://doi.org/10.1007/s11664-012-2280-6
  57. K. T. Kim, S. Y. Choi, E. H. Shin, K. S. Moon, H. Y. Koo, G. G. Lee, and G. H. Ha, "The Influence of CNTs on the Thermoelectric Properties of a CNT/$Bi_2Te_3$ Composite," Carbon, 52 541-49 (2013). https://doi.org/10.1016/j.carbon.2012.10.008
  58. K. Ahn, K. Biswas, J. He, V. Dravid, and M. G. Kanatzidis, "Enhanced Thermoelectric Properties of p-type Nanostructured PbTe-MTe (M = Cd, Hg) Materials," Energy Environ. Sci., 6 [5] 1529-37 (2013). https://doi.org/10.1039/c3ee40482j
  59. K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures," Nature, 489 [7416] 414-18 (2012). https://doi.org/10.1038/nature11439
  60. Y. Pei, J. Lensch - Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder, "High Thermoelectric Performance in PbTe Due to Large Nanoscale $Ag_2$Te Precipitates and La Doping," Adv. Funct. Mater., 21 [2] 41-9 (2011).
  61. K. Biswas, J. He, G. Wang, S. H. Lo, C. Uher, V. P. Dravid, and M. G. Kanatzidis, "High Thermoelectric Figure of Merit in Nanostructured p-type PbTe-MTe (M = Ca, Ba)," Energy Environ. Sci., 4 4675-84 (2011). https://doi.org/10.1039/c1ee02297k
  62. G. Tan, S. Wang, H. Li, Y. Yan, and X. Tang, "Enhanced Thermoelectric Performance in Zinc Substituted P-Type Filled Skutterudites $CeFe_{4-x}Zn_xSb_{12}$," J. Solid State Chem., 187 316-22 (2012). https://doi.org/10.1016/j.jssc.2012.01.045
  63. G. Tan, S. Wang, X. Tang, H. Li, and C. Uher, "Preparation and Thermoelectric Properties of Ga-Substituted p-type Fully Filled Skutterudites $CeFe_{4-x}Ga_xSb_{12}$," J. Solid State Chem., 96 203-8 (2012).
  64. Z. Xiong, X. Chen, X. Huang, S. Bai, and L. Chen, "High Thermoelectric Performance of $Yb_{0.26}Co_4Sb_{12}/yGaSb$ Nanocomposites Originating from Scattering Electrons of Low Energy," Acta Mater., 58 [11] 3995-4002 (2010). https://doi.org/10.1016/j.actamat.2010.03.025
  65. H. Li, X. Tang, Q. Zhang, and C. Uher, "High Performance $In_xCe_yCo_4Sb$ Thermoelectric Materials with in Situ Forming Nanostructured Insb Phase," Appl. Phys. Lett., 94 102114 (2009). https://doi.org/10.1063/1.3099804
  66. S. I. Kim, K. Ahn, D. Yeon, S. Hwang, H. Kim, S. M. Lee, and K. H. Lee, "Enhancement of Seebeck Coefficient in $Bi_{0.5}Sb_{1.5}Te_3$ with High-Density Tellurium Nanoinclusions," Appl. Phys. Express, 4 [9] 091801 (2011). https://doi.org/10.1143/APEX.4.091801
  67. K. H. Lee, H. S. Kim, S. I. Kim, E. S. Lee, S. M. Lee, J. S. Rhyee, J. Y. Jung, I. H. Kim, Y. Wang, and K. Koumoto, "Enhancement of Thermoelectric Figure of Merit for $Bi_{0.5}Sb_{1.5}Te_3$ by Metal Nanoparticle Decoration," J. Electron. Mater., 41 [6] 1165-69 (2101). https://doi.org/10.1007/s11664-012-1913-0
  68. K. H. Lee, Y. J. Kim, and S. W. Kim, unpublished data.
  69. Y. Min, G. Park, B. Kim, A. Giri, J. Zeng, J. W. Roh, S. I. Kim, K. H. Lee, and U. Jeong, "Synthesis of Multishell Nanoplates by Consecutive Epitaxial Growth of $Bi_2Se_3$ and $Bi_2Te_3$ Nanoplates and Enhanced Thermoelectric Properties," ACS Nano, 9 [7] 6843-53 (2015). https://doi.org/10.1021/nn507250r
  70. G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher, "Rapid Preparation of $CeFe_4Sb_{12}$ Skutterudite by Melt Spinning: Rich Nanostructures and High Thermoelectric Performance," J. Mater. Chem. A, 1 12657-68 (2013). https://doi.org/10.1039/c3ta13024j
  71. Y. Qiu, L. Xi, X. Shi, P. Qiu, W. Zhang, L. Chen, J. R. Salvador, J. Y. Cho, J. Yang, Y. C. Chien, S. W. Chen, Y. Tang, and G. J. Snyder, "Charge-Compensated Compound Defects in Ga-Containing Thermoelectric Skutterudites," Adv. Funct. Mater., 23 [25] 3194-203 (2013). https://doi.org/10.1002/adfm.201202571
  72. S. Ballikaya, G. Wang, K. Sun, and C. Uher, "Thermoelectric Properties of Triple-Filled $Ba_xYb_yIn_zCo_4Sb_{12}$ Skutterudites," J. Electron. Mater., 40 [5] 570-76 (2011). https://doi.org/10.1007/s11664-010-1454-3
  73. H. Li, X. Tang, Q. Zhang, and C. Uher, "Rapid Preparation Method of Bulk Nanostructured $Yb_{0.3}Co_4Sb_{12+y}$ Compounds and Their Improved Thermoelectric Performance," Appl. Phys. Lett., 93 252109 (2008). https://doi.org/10.1063/1.3054158
  74. X. Shi, J. Yang, J. R. Salvador, M. F. Chi, J. Y. Cho, H. Wang, S. Q. Bai, J. H. Yang, W. Q. Zhang, and L. D. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports," J. Am. Chem. Soc., 133 [20] 7837-46 (2011). https://doi.org/10.1021/ja111199y
  75. Q. Jie, H. Wang, W. Liu, H. Wang, G. Chen, and Z. F. Ren, "Fast Phase Formation of Double-Filled p-type Skutterudites by Ball-Milling and Hot-Pressing," Phys. Chem. Chem. Phys., 15 6809-16 (2013). https://doi.org/10.1039/c3cp50327e
  76. W. J. Xie, J. He, H. J. Kang, X. F. Tang, S. Zhu, M. Laver, S. Y. Wang, J. R. D. Copley, C. M. Brown, Q. J. Zhang, and T. M. Tritt, "Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of $(Bi,Sb)_2Te_3$ Nanocomposites," Nano Lett., 10 [9] 3283-89 (2010). https://doi.org/10.1021/nl100804a
  77. W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, and T. M. Tritt, "Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun BiSbTe Alloys," Appl. Phys. Lett., 94 102111 (2009). https://doi.org/10.1063/1.3097026
  78. L. Guo, G. Wang, K. Peng, Y. Yan, X. Tang, M. Zeng, J. Dai, G. Wang, and X. Zhou, "Melt Spinning Synthesis of p-type Skutterudites: Drastically Speed up the Process of High Performance Thermoelectrics," Scr. Mater., 116 [15] 26-30 (2016). https://doi.org/10.1016/j.scriptamat.2016.01.035
  79. H. Li, X. F. Tang, Q. J. Zhang, and C. Uher, "Rapid Preparation Method of Bulk Nanostructured $Yb_{0.3}Co_4Sb_{12+y}$ Compounds and Their Improved Thermoelectric Performance," Appl. Phys. Lett., 93 [25] 252109 (2008). https://doi.org/10.1063/1.3054158
  80. H. Li, X. F. Tang, X. L. Su, and Q. J. Zhang, "Preparation and Thermoelectric Properties of High-Performance Sb Additional $Yb_{0.2}Co_4Sb_{12+y}$ Bulk Materials with Nanostructure," Appl. Phys. Lett., 92 [20] 202114 (2008). https://doi.org/10.1063/1.2936277
  81. H. H. Xie, J. L. Mi, L. P. Hu, N. Lock, M. Chirstensen, C. G. Fu, B. B. Iversen, X. B. Zhao, and T. J. Zhu, "Interrelation between Atomic Switching Disorder and Thermoelectric Properties of ZrNiSn Half-Heusler Compounds," CrystEng- Comm, 14 [13] 4467-71 (2012). https://doi.org/10.1039/c2ce25119a
  82. C. Yu, T. J. Zhu, K. Xiao, J. J. Shen, S. H. Yang, and X. B. Zhao, "Reduced Grain Size and Improved Thermoelectric Properties of Melt Spun (Hf,Zr)NiSn Half-Heusler Alloys," J. Electron. Mater., 39 [9] 2008-12 (2010). https://doi.org/10.1007/s11664-009-1032-8

Cited by

  1. Microstructure Analysis and Thermoelectric Properties of Melt-Spun Bi-Sb-Te Compounds vol.7, pp.6, 2017, https://doi.org/10.3390/cryst7060180
  2. Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials pp.1543-186X, 2018, https://doi.org/10.1007/s11664-017-6013-8
  3. Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance pp.2093-6788, 2019, https://doi.org/10.1007/s13391-018-00103-w
  4. Control of Carrier Concentration by Ag Doping in N-Type Bi2Te3 Based Compounds vol.8, pp.5, 2018, https://doi.org/10.3390/app8050735
  5. Effect of Cu/In Doping on the Thermoelectric Transport Properties of Bi-Sb-Te Alloys vol.57, pp.10, 2017, https://doi.org/10.3365/kjmm.2019.57.10.673
  6. Band Convergence in Thermoelectric Materials: Theoretical Background and Consideration on Bi-Sb-Te Alloys vol.3, pp.3, 2020, https://doi.org/10.1021/acsaem.9b02131
  7. Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering vol.49, pp.5, 2020, https://doi.org/10.1007/s11664-019-07772-9
  8. Advanced Thermoelectric Design: From Materials and Structures to Devices vol.120, pp.15, 2020, https://doi.org/10.1021/acs.chemrev.0c00026
  9. Thermoelectric Properties in Bi2Te3/Poly(3,4-Ethylenedioxythiophene): Poly(4-Styrenesulfonate) Composites vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.08
  10. Mechanisms for Thermoelectric Power Factor Enhancement in Composite Thermoelectric Materials vol.24, pp.2, 2017, https://doi.org/10.31613/ceramist.2021.24.2.01
  11. Improving the thermoelectric performance of Ti-doped NbFeSb by substitutional doping of the Sb atoms with the isoelectric and heavy Bi atoms vol.9, pp.36, 2021, https://doi.org/10.1039/d1tc02896k