DOI QR코드

DOI QR Code

A CONSTRUCTION OF TWO-WEIGHT CODES AND ITS APPLICATIONS

  • Cheon, Eun Ju (Department of Mathematics and RINS Gyeongsang National University) ;
  • Kageyama, Yuuki (Department of Mathematics and Information Sciences Osaka Prefecture University) ;
  • Kim, Seon Jeong (Department of Mathematics and RINS Gyeongsang National University) ;
  • Lee, Namyong (Department of Mathematics and Statistics Minnesota State University) ;
  • Maruta, Tatsuya (Department of Mathematics and Information Sciences Osaka Prefecture University)
  • 투고 : 2015.12.09
  • 발행 : 2017.05.31

초록

It is well-known that there exists a constant-weight $[s{\theta}_{k-1},k,sq^{k-1}]_q$ code for any positive integer s, which is an s-fold simplex code, where ${\theta}_j=(q^{j+1}-1)/(q-1)$. This gives an upper bound $n_q(k,sq^{k-1}+d){\leq}s{\theta}_{k-1}+n_q(k,d)$ for any positive integer d, where $n_q(k,d)$ is the minimum length n for which an $[n,k,d]_q$ code exists. We construct a two-weight $[s{\theta}_{k-1}+1,k,sq^{k-1}]_q$ code for $1{\leq}s{\leq}k-3$, which gives a better upper bound $n_q(k,sq^{k-1}+d){\leq}s{\theta}_{k-1}+1+n_q(k-1,d)$ for $1{\leq}d{\leq}q^s$. As another application, we prove that $n_q(5,d)={\sum_{i=0}^{4}}{\lceil}d/q^i{\rceil}$ for $q^4+1{\leq}d{\leq}q^4+q$ for any prime power q.

키워드

참고문헌

  1. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), no. 2, 97-122. https://doi.org/10.1112/blms/18.2.97
  2. J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960), 532-542. https://doi.org/10.1147/rd.45.0532
  3. R. Hill, Optimal linear codes, Cryptography and coding, II (Cirencester, 1989), 75-104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992.
  4. R. Hill and E. Kolev, A survey of recent results on optimal linear codes, Combinatorial Designs and their Applications (Milton Keynes, 1997), 127-152, Chapman Hall/CRC Res. Notes Math., 403, Chapman Hall/CRC, Boca Raton, FL, 1999.
  5. R. Hill and D. E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2 (1992), no. 2, 137-157. https://doi.org/10.1007/BF00124893
  6. J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2nd ed., Clarendon Press, Oxford, 1998.
  7. Y. Kageyama and T. Maruta, On the construction of Griesmer codes of dimension 5, Des. Codes Cryptogr. 75 (2016), no. 2, 277-280. https://doi.org/10.1007/s10623-013-9914-4
  8. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland: New York, 1977.
  9. T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/-maruta/griesmer/.
  10. G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control 8 (1965), no. 2, 170-179. https://doi.org/10.1016/S0019-9958(65)90080-X