DOI QR코드

DOI QR Code

HOMOGENEOUS MULTILINEAR FUNCTIONS ON HYPERGRAPH CLIQUES

  • Lu, Xiaojun (College of Sciences Northeastern University) ;
  • Tang, Qingsong (College of Sciences Northeastern University) ;
  • Zhang, Xiangde (College of Sciences Northeastern University) ;
  • Zhao, Cheng (Mathematics and Computer Science Indiana State University)
  • Received : 2016.06.05
  • Published : 2017.05.31

Abstract

Motzkin and Straus established a close connection between the maximum clique problem and a solution (namely graph-Lagrangian) to the maximum value of a class of homogeneous quadratic multilinear functions over the standard simplex of the Euclidean space in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique problem in graphs. It is useful in practice if similar results hold for hypergraphs. In this paper, we develop a homogeneous multilinear function based on the structure of hypergraphs and their complement hypergraphs. Its maximum value generalizes the graph-Lagrangian. Specifically, we establish a connection between the clique number and the generalized graph-Lagrangian of 3-uniform graphs, which supports the conjecture posed in this paper.

Keywords

References

  1. I. M. Bomze, Evolution towards the maximum clique, J. Global Optim. 10 (1997), no. 2, 143-164. https://doi.org/10.1023/A:1008230200610
  2. M. Budinich, Exact bounds on the order of the maximum clique of a graph, Discrete Appl. Math. 127 (2003), no. 3, 535-543. https://doi.org/10.1016/S0166-218X(02)00386-4
  3. S. R. Bulo and M. Pelillo, A continuous characterization of maximal cliques in k-uniform hypergraphs, In: V. Maniezzo, R. Battiti, J. P. Watson(Eds.): Lecture Notes in Comput. Sci., vol. 5313, pp. 220-233. Spring, New York, 2008.
  4. S. R. Bulo and M. Pelillo, A generalization of the Motzkin-Straus theorem to hypergraphs, Optim. Lett. 3 (2009), no. 2, 287-295. https://doi.org/10.1007/s11590-008-0108-3
  5. S. R. Bulo, A. Torsello, and M. Pelillo, A continuous-based approach for partial clique enumeration, In: F. Escolano, M. Vento (Eds.): Lecture Notes in Comput. Sci., vol. 4538, pp. 61-70. Spring, New York, 2007.
  6. S. Busygin, A new trust region technique for the maximum weight clique problem, Discrete Appl. Math. 154 (2006), no. 15, 2080-2096. https://doi.org/10.1016/j.dam.2005.04.010
  7. P. Frankl and Z. Furedi, Extremal problems whose solutions are the blowups of the small Witt-designs, J. Combin. Theory Ser. A 52 (1989), no. 1, 129-147. https://doi.org/10.1016/0097-3165(89)90067-8
  8. P. Frankl and V. Rodl, Hypergraphs do not jump, Combinatorica 4 (1984), no. 2-3, 149-159. https://doi.org/10.1007/BF02579215
  9. L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana, Continuous characterizations of the maximum clique problem, Math. Oper. Res. 22 (1997), no. 3, 754-768. https://doi.org/10.1287/moor.22.3.754
  10. R. Gu, X. Li, Y. Peng, and Y. Shi, Some Motzkin-Straus type results for non-uniform hypergraphs, J. Comb. Optim. 31 (2016), no. 1, 223-238. https://doi.org/10.1007/s10878-014-9736-y
  11. X. Lu and X. Zhang, A note on Lagrangians of 4-uniform hypergraphs, Ars Combin. 121 (2015), 329-340.
  12. T. S. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a theorem of Turan, Canad. J. Math. 17 (1965), 533-540. https://doi.org/10.4153/CJM-1965-053-6
  13. D. Mubayi, A hypergraph extension of Turan's theorem, J. Combin. Theory Ser. B 96 (2006), no. 1, 122-134. https://doi.org/10.1016/j.jctb.2005.06.013
  14. P. M. Pardalos and A. Phillips, A global optimization approach for solving the maximum clique problem, Int. J. Comput. Math. 33 (1990), 209-216. https://doi.org/10.1080/00207169008803851
  15. M. Pavan and M. Pelillo, Generalizing the Motzkin-Straus theorem to edge-weighted graphs, with applications to image segmentation, In: A. Rangarajan, M. A. T. Figueiredo, J. Zerubia (Eds.): Lecture Notes in Comput. Sci., vol. 2683, pp. 485-500. Spring, New York, 2003,
  16. Y. Peng, H. Peng, Q. Tang, and C. Zhao, An extension of Motzkin-Straus theorem to non-uniform hypergraphs and its applications, Discrete Appl. Math. 200 (2016), 170-175. https://doi.org/10.1016/j.dam.2015.06.037
  17. Y. Peng, Q. Tang, and C. Zhao, On Lagrangians of r-uniform hypergraphs, J. Comb. Optim. 30 (2015), no. 3, 812-825. https://doi.org/10.1007/s10878-013-9671-3
  18. Y. Peng and C. Zhao, A Motzkin-Straus type result for 3-uniform hypergraphs, Graphs Combin. 29 (2013), no. 3, 681-694. https://doi.org/10.1007/s00373-012-1135-5
  19. A. F. Sidorenko, On the maximal number of edges in a homogeneous hypergraph that does not contain prohibited subgraphs, Mat. Zametki. 41 (1987), no. 3, 433-455.
  20. V. T. Sos and E. G. Straus, Extremals of functions on graphs with applications to graphs and hypergraphs, J. Combin. Theory Ser. B 32 (1982), no. 3, 246-257. https://doi.org/10.1016/0095-8956(82)90002-8
  21. Q. Tang, H. Peng, C. Wang, and Y. Peng, On Frankl and Furedi's conjecture for 3- uniform hypergraphs, Acta Math. Appl. Sin. Engl. Ser. 32 (2016), no. 1, 95-112. https://doi.org/10.1007/s10255-015-0513-1
  22. Q. Tang, Y. Peng, X. Zhang, and C. Zhao, On the graph-Lagrangians of 3-uniform hypergraphs containing dense subgraphs, J. Optim. Theory Appl. 163 (2014), no. 1, 31-56. https://doi.org/10.1007/s10957-013-0485-3
  23. Q. Tang, Y. Peng, X. Zhang, and C. Zhao, Connection between the clique number and the Lagrangian of 3-uniform hypergraphs, Optimization Lett. 10 (2016), no. 4, 685-697. https://doi.org/10.1007/s11590-015-0907-2
  24. P. Turan, On an extremal problem in graph theory, Mat. Fiz. Lapok. 48 (1941), 436-452.