DOI QR코드

DOI QR Code

ON PILLAI'S PROBLEM WITH TRIBONACCI NUMBERS AND POWERS OF 2

  • Bravo, Jhon J. (Departamento de Matematicas Universidad del Cauca) ;
  • Luca, Florian (School of Mathematics University of the Witwatersrand) ;
  • Yazan, Karina (Departamento de Matematicas Universidad del Cauca)
  • Received : 2016.06.09
  • Published : 2017.05.31

Abstract

The Tribonacci sequence ${\{T_n}\}_{n{\geq}0}$ resembles the Fibonacci sequence in that it starts with the values 0, 1, 1, and each term afterwards is the sum of the preceding three terms. In this paper, we find all integers c having at least two representations as a difference between a Tribonacci number and a power of 2. This paper continues the previous work [5].

Keywords

References

  1. A. Baker and H. Davenport, The equations $3x^2$ − 2 = $y^2$ and $8x^2$ − 7 = $z^2$, Quart. J Math. Ser. (2) 20 (1969), 129-137. https://doi.org/10.1093/qmath/20.1.129
  2. J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), no. 3-4, 623-639. https://doi.org/10.5486/PMD.2013.5390
  3. Y. Bugeaud, M.Maurice, and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969-1018. https://doi.org/10.4007/annals.2006.163.969
  4. K. C. Chim, I. Pink, and V. Ziegler, On a variant of Pillai's problem, arXiv 1604.04719.
  5. M. Ddamulira, F. Luca, and M. Rakotomalala, On a problem of Pillai with Fibonacci numbers and powers of 2, Preprint 2015.
  6. G. P. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), no. 4, Article 14.4.7, 9 pp.
  7. A. Dujella and A. Petho, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291-306. https://doi.org/10.1093/qmathj/49.3.291
  8. A. Herschfeld, The equation $2^x$$3^y$ = d, Bull. Amer. Math. Soc. 41 (1935), 631.
  9. A. Herschfeld, The equation $2^x$$3^y$ = d, Bull. Amer. Math. Soc. 42 (1936), no. 4, 231-234. https://doi.org/10.1090/S0002-9904-1936-06275-0
  10. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125-180; translation in Izv. Math. 64 (2000), no. 6, 1217-1269. https://doi.org/10.4213/im314
  11. P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004), 167-195.
  12. D. Z. Mo and R. Tijdeman, Exponential Diophantine equations with four terms, Indag. Math. (N.S.) 3 (1992), no. 1, 47-57. https://doi.org/10.1016/0019-3577(92)90045-M
  13. S. S. Pillai, On $a^x$$b^y$ = c, J. Indian math. Soc. (N.S.) 2 (1936), 119-122.
  14. S. S. Pillai, A correction to the paper "On $a^x$$b^y$ = c", J. Indian math. Soc. 2 (1937), 215.
  15. C. L. Siegel, Uber einige Anwendungen diophantischer Approximationen, Abhandlungen Akad. Berlin (1929), no. 1, 70 S.
  16. R. J. Stroeker and R. Tijdeman, Diophantine equations, in Computational Methods in Number Theory, Part II, , 321-369, vol. 155 of Math. Centre Tracts, Math. Centrum, Amsterdam, 1982.

Cited by

  1. On a variant of Pillai's problem II 2017, https://doi.org/10.1016/j.jnt.2017.07.016
  2. On Pillai’s problem with the Fibonacci and Pell sequences pp.2296-4495, 2019, https://doi.org/10.1007/s40590-018-0223-9
  3. On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2 vol.187, pp.4, 2018, https://doi.org/10.1007/s00605-018-1155-1