DOI QR코드

DOI QR Code

Microwave Dielectric Properties of (Ba1-2xNa2x)(Mg0.5-xZrxW0.5)O3 Ceramics

(Ba1-2xNa2x)(Mg0.5-xZrxW0.5)O3 세라믹스의 마이크로파 유전특성

  • Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Hong, Chang-Bae (Nano Materials Division, RN2 Technologies Branch (2nd Factory)) ;
  • Lee, Yun-Joong (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Kim, Shin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
  • 윤상옥 (강릉원주대학교 세라믹신소재공학과) ;
  • 홍창배 ((주) 알엔투 테크놀로지 제2공장 나노재료사업부) ;
  • 이윤중 (강릉원주대학교 세라믹신소재공학과) ;
  • 김신 (강릉원주대학교 세라믹신소재공학과)
  • Received : 2017.03.21
  • Accepted : 2017.03.29
  • Published : 2017.06.01

Abstract

We investigated the phase evolution, microstructure, and microwave dielectric properties of Na- and Zr-doped $Ba(Mg_{0.5}W_{0.5})O_3$ [i.e., ($Ba_{1-2x}Na_{2x})(Mg_{0.5-x}Zr_xW_{0.5})O_3$] ceramics. $BaWO_4$ as a secondary phase was observed in all compositions, and it increased as the dopant concentration increased. All specimens revealed a dense microstructure. For the composition of x=0.01, polyhedral grains were observed. As the dopant concentration increased, the densification and the grain growth were promoted by a liquid phase. The quality factor($Q{\times}f_0$) decreased remarkably, whereas the dielectric constant (${\varepsilon}_r$) tended to decrease as the dopant concentration increased. The dielectric constant, quality factor, and temperature coefficient of the resonant frequency of the composition of x=0.01 sintered at $1,700^{\circ}C$ for 1 h were 18.6, 216,275 GHz, and $-22.0ppm/^{\circ}C$, respectively.

Keywords

References

  1. H. Ohsato, J. Ceram. Soc. Jpn., 113, 703 (2005). [DOI: http://doi.org/10.2109/jcersj.113.703]
  2. S. B. Narang and S. Bahel, J. Ceram. Process. Res., 11, 316 (2010).
  3. Y. Zhou, S. Meng, H. Wu, and Z. Yue, J. Am. Ceram. Soc., 94, 2933 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04450.x]
  4. H. Takahashi, K. Ayusawa, and N. Sakamoto, Jpn. J. Appl. Phys., 36, 5597 (1997). [DOI: http://dx.doi.org/10.1143/JJAP.36.5597]
  5. J. Y. Wu and J. J. Bian, Ceram. Int., 39, 3641 (2013). [DOI: http://dx.doi.org/10.1016/j.ceramint.2012.10.193]
  6. J. J. Bian and J. Y. Wu, Ceram. Int., 42, 3290 (2016). [DOI: http://dx.doi.org/10.1016/j.ceramint.2015.10.120]
  7. Y. J. Lin, S. F. Wang, S. H. Chen, Y. L. Liao, and C. L. Tsai, Ceram. Int., 41, 8931 (2015). [DOI: http://dx.doi.org/10.1016/j.ceramint.2015.03.166]
  8. J. Y. Wu and J. J. Bian, J. Am. Ceram. Soc., 97, 880 (2014). [DOI: http://dx.doi.org/10.1111/jace.12726]
  9. E. M. Levin, Phase Diagrams for Ceramists (The American Ceramic Society, Ohio, 1969).
  10. R. D. Shannon, J. Appl. Phys., 73, 348 (1993). [DOI: http://dx.doi.org/10.1063/1.353856]
  11. S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, J. Eur. Ceram. Soc., 26, 2051 (2006). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.058]
  12. N. M. Alford and S. J. Penn, J. Appl. Phys., 80, 5895 (1996). [DOI: http://dx.doi.org/10.1063/1.363584]