DOI QR코드

DOI QR Code

이온성 액체/DMF 혼합용매 전처리 후 기계적 해섬을 통한 리그노셀룰로오스 나노섬유의 제조

Preparation of Lignocellulose Nanofiber by Mechanical Defibrillation After Pretreatment Using Cosolvent of Ionic Liquid and DMF

  • 한송이 (강원대학교 산림바이오소재공학과) ;
  • 박찬우 (강원대학교 산림바이오소재공학과) ;
  • 이승환 (강원대학교 산림바이오소재공학과)
  • Han, Song-Yi (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Park, Chan-Woo (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, Kangwon National University)
  • 투고 : 2017.01.25
  • 심사 : 2017.04.18
  • 발행 : 2017.05.25

초록

본 연구는 리그노셀룰로오스의 주성분 용해에 우수하다고 알려진 이온성 액체인 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac)와 셀룰로오스와 친화성이 있는 유기용매인 dimethylformamide (DMF)의 혼합용매를 이용하여 갯버들 목분을 처리한 후, 디스크밀 해섬에 의한 리그노셀룰로오스 나노섬유를 제조하고 그 특성을 평가하였다. 무처리샘플과 DMF 및 [EMIM]Ac가 10과 30% 포함된 혼합용매로 목분의 고형분량을 15%로 선정하였다. 전처리물의 X선 회절도로부터 모든 샘플이 셀룰로오스 I의 패턴을 나타냈으며, 상대결정화도는 [EMIM]Ac가 30% 포함된 혼합용매로 2시간 처리한 전처리물이 가장 낮았다. 무처리 및 DMF와 [EMIM]Ac가 10% 포함된 혼합용매로 처리한 전처리물의 평균결정크기는 약 3.2 nm였으며, [EMIM]Ac가 30%까지 포함되고 처리 시간이 경과할수록 다소 감소하는 경향을 나타내었다. 혼합용매의 사용을 통한 전처리물의 목재세포벽 구조의 완화로 해섬 효율이 향상되었으며, 전처리 시간 및 해섬 시간이 경과할수록 비표면적이 증가하는 경향을 나타내었다.

In this study, lignocellulose nanofibrils (LCNFs) were prepared from Pussy willow wood powder by disk-milling after pretreatment using the cosolvent of 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) and N,N-dimethylformamide (DMF) with different mixing ratios for different time. All pretreated samples showed native cellulose I polymorph and cellulose crystallinity was lowest when cosolvent of DMF with 30% [EMIM]Ac was used. Average crystallite size of raw material and the pretreated product by MDF and its cosolvent with 10% [EMIM]Ac was found to be about 3.2 nm and decreased with increasing pretreatment time at the DMF cosolvent with 30% [EMIM]Ac. Defibrillation efficiency was improved by loosening wood cell wall structure by the pretreatment using co-solvent system of [EMIM]Ac and DMF.

키워드

참고문헌

  1. Brandt, A., Grasvik, J., Hallett, J.P., Welton, T. 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry 15: 550-583. https://doi.org/10.1039/c2gc36364j
  2. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S. 2011. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research 2011: 1-17.
  3. Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60(2): 309-319. https://doi.org/10.1021/ja01269a023
  4. Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Science and Technology 46(1): 393-403. https://doi.org/10.1007/s00226-011-0416-0
  5. Charreau, H., Foresti, M.L., Vazquez, A. 2013. Nanocellulose patents trends: A comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Patents on Nanotechnology 7(1): 56-80. https://doi.org/10.2174/187221013804484854
  6. Cheng, G., Varanasi, P., Arora, R., Stavila, V., Simmons, B.A., Kent, M.S., Singh, S. 2012. Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. Journal of Physical Chemistry B 116(33): 10049-10054. https://doi.org/10.1021/jp304538v
  7. Chirayil, C.J., Mathew, L., Thomas, S. 2014. Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Reviews on Advanced Materials Science 37(1): 20-28.
  8. da Silva, A.S., Lee, S.H., Endo, T., Bon, E.P.S. 2011. Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]). Bioresource Technology 102(22): 10505-10509. https://doi.org/10.1016/j.biortech.2011.08.085
  9. Doherty, T.V., Mora-Pale, M., Foley, S.E., Linhardt, R.J., Dordick, J.S. 2010. Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy, Green Chemistry 12: 1967-1975. https://doi.org/10.1039/c0gc00206b
  10. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T. 2010. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 45(1): 1-33. https://doi.org/10.1007/s10853-009-3874-0
  11. Endo, T. 2009. Bioethanol production from woods with the aid of nanotechnology. Synthesiology 2(4): 310-320. https://doi.org/10.5571/synth.2.310
  12. Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G., Rogers, R.D. 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 9: 63-69. https://doi.org/10.1039/B607614A
  13. Galland, S., Berthold, F., Prakobna, K., Berglund, L.A. 2015. Holocellulose nanofibers of high molar mass and small diameter for high-strength nanopaper. Biomacromolecules 16(8): 2427-2435. https://doi.org/10.1021/acs.biomac.5b00678
  14. Gomes, F.J.B., Santos, F.A., Colodette, J.L., Demuner, I.F., Batalha, L.A.R. 2014. Literature review on biorefinery processes intergrated to the pulp industry. Natural Resources 5: 419-432. https://doi.org/10.4236/nr.2014.59039
  15. Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500. https://doi.org/10.1021/cr900339w
  16. Han, S.Y., Park, C.W., Kim, N.H., Lee, S.H. 2017. Co-solvent system of [EMIM]Ac and DMF to improve the enzymatic saccharification of pussy willow (Salix gracilistyla Miq.). Holzforschung 71(1): 43-50.
  17. Han, S.Y., Park, C.W., Kim, B.Y., Lee, S.H., 2015. Effect of the addition of various cellulose nanofibers on the properties of sheet of paper mulberry bast fiber. Journal of the Korean Wood Science and Technology 43(6): 730-739. https://doi.org/10.5658/WOOD.2015.43.6.730
  18. Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6): 1579-1585. https://doi.org/10.1021/bm800038n
  19. Iwamoto, S., Nakagaito, A.N., Yano, H. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A 89(2): 461-466. https://doi.org/10.1007/s00339-007-4175-6
  20. Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofibers from domestic plantation resources. Journal of the Korean Wood Science and Technology 40(3): 156-163. https://doi.org/10.5658/WOOD.2012.40.3.156
  21. Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology 47(5): 925-937. https://doi.org/10.1007/s00226-013-0543-x
  22. Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Averous, L., Njuguna, J., Nassiopoulos, E. 2011. Cellulose-based bio- nanocomposites: A review. International Journal of Polymer Science 2011: 1-35.
  23. Katahira, R., Mittal, A., McKinney, K., Ciesielski, P.N., Donohoe, B.S., Black, S.K., Johnson, D.K., Biddy, M.J., Beckham, G.T. 2014. Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sustainable Chemistry & Engineering 2(6): 1364-1376. https://doi.org/10.1021/sc5001258
  24. Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 50(24): 5438-5466. https://doi.org/10.1002/anie.201001273
  25. Kumagai, A., Lee, S.H., Endo, T. 2013. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Biomacromolecules 14(7): 2420-2426. https://doi.org/10.1021/bm400553s
  26. Lee, S.H., Teramoto, Y., Endo, T. 2010a. Enhancement of enzymatic accessibility by fibrillation of woody biomass using batch-type kneader with twin-screw elements. Bioresource Technology 101(2): 769-774. https://doi.org/10.1016/j.biortech.2009.08.083
  27. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010b. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology 101(19): 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  28. Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S. 2009. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering 102(5): 1368-1376. https://doi.org/10.1002/bit.22179
  29. Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrils and their applications: High strength nanopapers and polymer composite films. Mokchae Konghak 39(3): 197-205.
  30. Marsh, K.N., Boxall, J.A., Lichtenthaler, R. 2004. Room temperature ionic liquids and their mixtures-a review. Fluid Phase Equilibria 219(1): 93-98. https://doi.org/10.1016/j.fluid.2004.02.003
  31. Monshi, A., Foroughi, M.R., Monshi, M.R. 2012. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering 2(3): 154-160. https://doi.org/10.4236/wjnse.2012.23020
  32. Nobuta, K., Teramura, H., Ito, H., Hongo, C., Kawaguchi, H., Ogino, C., Kondo, A., Nishino, T. 2016. Characterization of cellulose nanofiber sheets from different refining processes. Cellulose 23(1): 403-414. https://doi.org/10.1007/s10570-015-0792-y
  33. Olivier-Bourbigou, H., Magna, L., Morvan, D. 2010. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General 373(1-2): 1-56. https://doi.org/10.1016/j.apcata.2009.10.008
  34. Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. Journal of the Korean Wood Science and Technology 43(1): 17-24. https://doi.org/10.5658/WOOD.2015.43.1.17
  35. Plechkova, N.V., Seddon, K.R. 2008. Applications of ionic liquids in the chemical industry. Chemical Society Reviews 37(1): 123-150. https://doi.org/10.1039/B006677J
  36. Potdar, M.K., Kelso, G.F., Schwarz, L., Zhang, C., Hearn, M.T.W. 2015. Recent developments in chemical synthesis with biocatalysts in ionic liquids. Molecules 20(9): 16788-16816. https://doi.org/10.3390/molecules200916788
  37. Segal, L., Creely, J.J., Martin Jr., A.E., Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29(10): 786-794. https://doi.org/10.1177/004051755902901003
  38. Subhedar, P.B., Gogate, P.R. 2014. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry 21(1): 216-225. https://doi.org/10.1016/j.ultsonch.2013.08.001
  39. Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H., Rogers, R.D. 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry 11: 646-655. https://doi.org/10.1039/b822702k
  40. Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., Tran, K., George, A., Sale, K.L., Singh, S., Simmons, B.A., Holmes, B.M. 2013. Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels 6(1): 39-52. https://doi.org/10.1186/1754-6834-6-39
  41. Wan, C., Zhou, Y., Li, Y. 2011. Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology 102(10): 6254-6259. https://doi.org/10.1016/j.biortech.2011.02.075
  42. vWilkes, J.S. 2002. A short history of ionic liquid-from molten salts to neoteric solvents. Green Chemistry 4: 73-80. https://doi.org/10.1039/b110838g
  43. Wu, L., Lee, S.H., Endo, T. 2013. Effect of dimethyl sulfoxide on ionic liquid 1-ethyl-3-methylimidazolium acetate pretreatment of eucalyptus wood for enzymatic hydrolysis. Bioresource Technology 140: 90-96. https://doi.org/10.1016/j.biortech.2013.04.072