DOI QR코드

DOI QR Code

Study on Point and Line Tunneling in Si, Ge, and Si-Ge Hetero Tunnel Field-Effect Transistor

Si, Ge과 Si-Ge Hetero 터널 트랜지스터의 라인 터널링과 포인트 터널링에 대한 연구

  • Lee, Ju-chan (Department of Electrical, Electronic and Control Engineering and IITC, Hankyong National University) ;
  • Ann, TaeJun (Department of Electrical, Electronic and Control Engineering and IITC, Hankyong National University) ;
  • Sim, Un-sung (Department of Electronic Engineering, Hankyong National University) ;
  • Yu, YunSeop (Department of Electrical, Electronic and Control Engineering and IITC, Hankyong National University)
  • Received : 2016.12.21
  • Accepted : 2017.02.14
  • Published : 2017.05.31

Abstract

The current-voltage characteristics of Silicon(Si), Germanum(Ge), and hetero tunnel field-effect transistors(TFETs) with source-overlapped gate structure was investigated using TCAD simulations in terms of tunneling. A Si-TFET with gate oxide material $SiO_2$ showed the hump effects in which line and point tunneling appear simultaneously, but one with gate oxide material $HfO_2$ showed only the line tunneling due to decreasing threshold voltage and it shows better performance than one with gate oxide material $SiO_2$. Tunneling mechanism of Ge and hetero-TFETs with gate oxide material of both $SiO_2$ and $HfO_2$ are dominated by point tunneling, and showed higher leakage currents, and Si-TFET shows better performance than Ge and hetero-TFETs in terms of SS. These simulation results of Si, Ge, and hetero-TFETs with source-overlapped gate structure can give the guideline for optimal TFET structures with non-silicon channel materials.

TCAD 시뮬레이션을 이용하여 소스 영역으로 오버랩된(Overlapped) 게이트를 가진 실리콘(Si), 게르마늄(Ge)과 실리콘-게르마늄(Si-Ge) Hetero 터널 전계효과 트랜지스터(Tunnel Field-Effect Transistor; TFET)의 터널링 전류 특성을 분석하였다. $SiO_2$를 산화막으로 사용한 Si-TFET의 경우에 포인트와 라인 터널링이 모두 나타나서 험프(Hump) 현상이 나타난다. Ge-TFET는 구동전류가 Si-TFET보다 높으나 누설전류가 높고 포인트 터널링이 지배적으로 나타난다. Hetero-TFET의 경우에 구동전류가 높게 나타나고 누설전류는 나타나지 않았으나 포인트 터널링이 지배적으로 나타난다. $HfO_2$를 산화막으로 사용한 Si-TFET의 경우에 라인 터널링의 문턱전압(threshold voltage)이 감소하여 라인 터널링만 나타난다. Ge과 Hetero-TFET의 경우에 포인트 터널링의 문턱전압이 감소하여 포인트 터널링에 의해 동작되며 Ge-TFET는 누설전류가 증가하였고, Hetero-TFET에서 Hump가 나타난다.

Keywords

References

  1. K. P. Cheung, "On the 60 mV/dec @300 K limit for MOSFET subthreshold swing," in Proceeding of VLSI Technology Systems and Applications (VLSI-TSA) 2010 International Symposium on IEEE, Hsin Chu: Taiwan, pp. 72-73, 2010.
  2. W. Y. Choi and B. G. Park "Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec," IEEE Electron Device Letters, vol. 28, no. 8, pp. 743-745, Aug. 2007. https://doi.org/10.1109/LED.2007.901273
  3. A. O. Caldeira and A. J. Leggett "Influence of Dissipation on Quantum Tunneling in Macroscopic Systems," American Physical Society, vol. 46, no. 4, pp. 211-214, 26 Jan. 1981.
  4. W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, "Analytical model for point and line tunneling in a tunnel field-effect transistor," in Proceeding of Simulation of Semiconductor Processes and Devices 2008 SISPAD 2008. International Conference, IEEE, pp. 9-11, Sept. 2008.
  5. N. D. Chiena, C. H. Shiha, "Short-channel effect and device design of extremely scaled tunnel field-effect transistors," Microelectronics Reliability, vol. 55, no. 1, pp. 31-37, Jan. 2015. https://doi.org/10.1016/j.microrel.2014.09.028
  6. S. W. Kim, W. Y. Choi, "Hump Effects of Germanium/ Silicon Heterojunction Tunnel Field-Effect Transistors," IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2583-2588, June 2016. https://doi.org/10.1109/TED.2016.2555928
  7. H. Y. Chang, B. Adams, P. Y. Chien, J. L. Jason, C. S. Woo "Improved Subthreshold and Output Characteristics of Source-Pocket Si Tunnel FET by the Application of Laser Annealing," IEEE Transactions on Electron Devices, vol. 60, no. 1, pp. 92-96, Jan. 2013. https://doi.org/10.1109/TED.2012.2228006
  8. S. W. Kim, W. Y. Choi, M. C. Sun, H. W. Kim, J. H. Lee, "L-Shaped Tunneling Field-Effect Transistors (TFETs) for Low Subthreshold Swing and High Current Drivability," in Proceeding of Int. Microprocesses and Nanotechnology Conf, pp. 26C-4-5L, Kyoto: Japan. 2011.
  9. Hraziia, A. Vladimirescu, A. Amara, C. Anghel, "An analysis on the ambipolar current in Si double-gate tunnel FETs," Solid-State Electronics, vol. 70, pp. 67-72, April 2012. https://doi.org/10.1016/j.sse.2011.11.009
  10. C. J. Forst, C. R. Ashman, K. Schwarz, and P. E. Blochl, "The interface between silicon and a high-k oxide," Nature, vol. 427, pp. 53-56, Jan. 2004. https://doi.org/10.1038/nature02204