DOI QR코드

DOI QR Code

Implementation of crowbar circuit for high-speed discharge·charge switching and its characteristic analysis

고속 방전·충전 스위칭 전원차단회로 설계 제작 및 특성분석

  • Lee, Min-woong (Department of Nuclear convergence technology, Korea Atomic Energy Research Institute) ;
  • Cho, Seong-ik (Department of Electronic engineering, Chonbuk National University) ;
  • Lee, Nam-ho (Department of Nuclear convergence technology, Korea Atomic Energy Research Institute) ;
  • Jeong, Sang-hun (Department of Nuclear convergence technology, Korea Atomic Energy Research Institute)
  • Received : 2017.02.28
  • Accepted : 2017.03.28
  • Published : 2017.05.31

Abstract

In this paper, we proposed a novel crowbar circuit for high-speed discharge charge switching to solve discharge charge-time delay of supply voltage in the conventional crowbar circuit. The proposed circuit is designed to increase the charge-speed after high-speed discharge of supply voltage, thereby reducing the time exposed to radiation damage and, the normal operation time of electronic system after passing the pulse radiation. The simulation of the discharge charge-times before the implement of the hardware is conducted using Cadence's pspice tool, and DUT (Device Under Test) board is fabricated in the device level. The comparison measurement of the crowbar circuits is performed on the satellite-electronic device for 24V. As the result, we confirmed the high-speed function of the proposed circuit by improvement of the discharge-speed 96.8% and the charge-speed 27.3% as compared with the conventional circuit.

본 논문에서는 기존 전원차단회로의 공급전원 차단 복귀 시간 지연 문제를 해결하기 위하여 고속 방전 충전 스위칭 기능을 갖는 새로운 전원차단회로를 제안하였다. 제안된 전원차단회로는 공급전원 고속 차단 후 복귀(충전) 속도를 증가시키도록 설계함으로써 전자시스템의 방사선 노출 시간과 펄스 방사선이 지나간 후 정상동작하기 위한 시간을 줄였다. 하드웨어를 구현하기 전 방전 충전 시간의 시뮬레이션은 Cadence 사의 pspice tool을 이용하여 진행하였으며 소자레벨에서 DUT(Device Under Test) 보드를 제작하였다. 전원차단회로의 비교 측정은 24V용 인공위성 전자소자를 대상으로 수행되었다. 그 결과, 제안된 회로는 기존 회로에 비하여 방전속도 96.8%, 복귀속도 27.3% 향상으로 고속 기능이 구현됨을 확인하였다.

Keywords

References

  1. J. F. Leavy, R. A. Poll, "Radiation-Induced Integrated Circuit Latchup," IEEE Transactions Nuclear Science, vol. 16, no. 6, pp. 96-103, Dec. 1969. https://doi.org/10.1109/TNS.1969.4325510
  2. C. Lewis, M. Espig, A. Wolicki, M. Simons, C. Rogers, A. Costantine, Transient Radiation Effects on Electronics (TREE) Handbook, DNA., Alexandria, Tech. Rep. DNA-H- 95-61, Dec. 1995.
  3. D. R. Alexander, "Transient Ionizing Radiation Effects in Devices and Circuits," IEEE Transactions Nuclear Science, vol. 50, no. 3, pp. 565-582, Jun. 2003. https://doi.org/10.1109/TNS.2003.813136
  4. S. C. Oh, N. H. Lee, and H. H. Lee, "The Study of the transient radiation effects on electronic devices caused by pulsed high energy gamma-ray," in proceeding of the 12th International Conference on Control, Automation and Systems, Jeju Island, pp. 1234-1236, Oct. 2012.
  5. L. Larry, NUCLEAR EVENT DETECTOR, US Patent 4,687,622, to IRT Corp., Patent and Trademark Office, San Diego, Calif., 1987.
  6. G. Douglas. et al., SOLID STATE CROWBAR CIRCUIT, US Patent 3,569,784, to USAEC, Patent and Trademark Office, San Jose, Calif., 1968.
  7. S. H. Jeong, N. H. Lee, and S. I. Cho, "A Design of High-speed Power-off Circuit and Analysis," The Transactions of the Korean Institute of Electrical Engineers, vol. 63, no. 4, pp. 490- 494, Mar. 2014. https://doi.org/10.5370/KIEE.2014.63.4.490
  8. D. E. Fulkerson, D. K. Nelson, R. M. Carlson, E. E. Vogt, "Modeling Ion-Induced Pulses in Radiation-Hard SOI Integrated Circuits," IEEE Transactions Nuclear Science, vol. 3, no. 3, pp. 1406-1505, Aug. 2007.