DOI QR코드

DOI QR Code

Fast Detection of Disease in Livestock based on Deep Learning

축사에서 딥러닝을 이용한 질병개체 파악방안

  • Lee, Woongsup (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Kim, Seong Hwan (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Ryu, Jongyeol (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Ban, Tae-Won (Department of Information and Communication Engineering, Gyeongsang National University)
  • Received : 2017.02.02
  • Accepted : 2017.02.27
  • Published : 2017.05.31

Abstract

Recently, the wide spread of IoT (Internet of Things) based technology enables the accumulation of big biometric data on livestock. The availability of big data allows the application of diverse machine learning based algorithm in the field of agriculture, which significantly enhances the productivity of farms. In this paper, we propose an abnormal livestock detection algorithm based on deep learning, which is the one of the most prominent machine learning algorithm. In our proposed scheme, the livestock are divided into two clusters which are normal and abnormal (disease) whose biometric data has different characteristics. Then a deep neural network is used to classify these two clusters based on the biometric data. By using our proposed scheme, the normal and abnormal livestock can be identified based on big biometric data, even though the detailed stochastic characteristics of biometric data are unknown, which is beneficial to prevent epidemic such as mouth-and-foot disease.

최근 사물 인터넷 기술의 활용을 통해 가축 및 축사 관련 빅데이터 축적이 가능해 졌다. 이러한 빅 데이터를 기반으로 다양한 기계학습방안들이 가축관리에 적용되어 축산농가의 생산성을 크게 향상시키고 있다. 본 연구에서는 현재 가장 주목받고 있는 기계학습 기술인 딥러닝을 적용한 질병개체 파악방안을 제안한다. 제안한 방안에서는 정상상태와 질병상태의 가축들이 섞여있는 환경에서 상태에 따라 다른 생체데이터 특성을 지닐 때 심층신경망을 이용하여 가축의 상태를 분류한다. 제안 방안은 가축 생체데이터의 통계적 특성을 모르는 상황에서도 학습을 통해서 가축의 상태를 정확하게 분류할 수 있다. 질병개체의 정확한 파악은 구제역과 같은 전염성 질병을 예방하는데 큰 도움이 될 수 있다.

Keywords

References

  1. K. Han, W. Lee, and K. Sung, "Development of a model to analyze the relationship between smart pig-farm environmental data and daily weight increase based on decision tree," Journal of Korea Institute of information and communication engineering, vol. 20, no. 12, pp.2348- 2354, Dec. 2016. https://doi.org/10.6109/jkiice.2016.20.12.2348
  2. M.S. Lee and Y.C. Choe, "Forecasting Sow's Productivity using the Machine Learning Models," Journal of Agricultural Extension & Community Development, vol. 16, no. 4, pp. 939-965, Dec. 2009.
  3. D. Z. Caraviello, K. A.Weigel, M. Craven, D. Gianola, N. B. Cook, K. V. Nordlund and M. C. Wiltbank, "Analysis of reproductive performance of lactating cows on large dairy farms using machine learning algorithms," Journal of dairy science, vol. 89, no. 12, pp.4703-4722, Dec. 2006. https://doi.org/10.3168/jds.S0022-0302(06)72521-8
  4. S. Shahinfar, D. Page, J. Guenther, V. Cabrera, P. Fricke and K. Weigel, "Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms," Journal of dairy science, vol. 97, no. 2, pp.731-742, Feb. 2014. https://doi.org/10.3168/jds.2013-6693
  5. S. J. Roberts, R. Cain and M. S. Dawkins, "Prediction of welfare outcomes for broiler chickens using Bayesian regression on continuous optical flow data," Journal of the Royal Society interface, pp.3436-3443, Sep. 2012.
  6. W. Lee, S. Hwang and J. Kim, "Fast Detection of Disease in Livestock based on Machine Learning," The 37th conference of Korea Institute of information and communication engineering, vol. 19, no. 1, pp.294-297, May 2015.
  7. M. A. Kashiha, C. Bahr, S. Ott, C. P. Moons, T. A. Niewold, F. Tuyttens and D. Berckmans, "Automatic monitoring of pig locomotion using image analysis," Livestock Science, vol. 159, pp.141-148, Jan. 2014. https://doi.org/10.1016/j.livsci.2013.11.007
  8. E. Khoramshahi, J. Hietaoja, A. Valros, J. Yun and M. Pastell, "Real-time recognition of sows in video: A supervised approach," Information Processing in Agriculture, vol. 1, no. 1, pp. 73-81, Aug. 2014. https://doi.org/10.1016/j.inpa.2014.07.002
  9. Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp.436-444, May 2015. https://doi.org/10.1038/nature14539
  10. M. M. Santoni, D. I. Sensuse, A. M. Arymurthy and M. I. Fanany, Bhargava, G. Sharma, R. Bhargava and M. Mathuria, "Cattle Race Classification Using Gray Level Co-occurrence Matrix Convolutional Neural Networks," Procedia Computer Science, vol. 59, pp.493-502, Aug. 2015. https://doi.org/10.1016/j.procs.2015.07.525
  11. S. Chowdhury, B. Verma, J. Roberts, N. Corbet and D. Swain, "Deep Learning Based Computer Vision Technique for Automatic Heat Detection in Cows" Development International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-6, Dec. 2016.
  12. J. Gloster, K. Ebert, S. Gubbins, J. Bashiruddin, D. J. Paton, "Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection" BMC Veterinary Research, vol. 7, no. 73, pp. 1-10, Nov. 2011. https://doi.org/10.1186/1746-6148-7-1

Cited by

  1. 기계학습기반 양돈생산성 예측방안 vol.24, pp.1, 2017, https://doi.org/10.6109/jkiice.2020.24.1.130
  2. 이진 분류를 위하여 거리계산을 이용한 특징 변환 기반의 가중된 최소 자승법 vol.24, pp.2, 2017, https://doi.org/10.6109/jkiice.2020.24.2.219
  3. 사물인터넷 기반 소관리 시스템의 분석 및 설계 vol.21, pp.2, 2017, https://doi.org/10.7236/jiibc.2021.21.2.125