REGULAR ACTION IN \mathbb{Z}_n

JINSUN JEONG AND SANGWON PARK

Abstract. Let n be any positive integer and $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ be the ring of integers modulo n. Let X_n be the set of all nonzero, nonunits of \mathbb{Z}_n, and G_n be the group of all units of \mathbb{Z}_n. In this paper, by investigating the regular action on X_n by G_n, the following are proved: (1) The number of orbits under the regular action (resp. the number of annihilators in X_n) is equal to the number of all divisors $(\neq 1, n)$ of n; (2) For any positive integer n, $\sum_{g \in G_n} g \equiv 0 \pmod{n}$; (3) For any orbit $o(x)$ ($x \in X_n$) with $|o(x)| \geq 2$, $\sum_{y \in o(x)} y \equiv 0 \pmod{n}$.

1. Introduction and basic definitions

Let n be any positive integer and $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ be the ring of integers modulo n. Let X_n be the set of all nonzero, nonunits of \mathbb{Z}_n and G_n be the group of all units of \mathbb{Z}_n. In this paper, we will consider a group action on X_n by G_n given by $((g, x) \rightarrow gx)$ from $G_n \times X_n$ to X_n, called the regular action on X_n by G_n. Under the regular action on X_n by G_n, we define the orbit of x by $o(x) = \{gx : \forall g \in G_n\}$ and the stabilizer of x by $\text{stab}(x) = \{g \in G_n : gx = x\}$ (refer [1], [2], [3]).

Recall that the annihilator of $x \in X_n$ (denoted by $\text{ann}(x)$) is defined by $\{a \in \mathbb{Z}_n : ax = 0\}$. Throughout this paper, we will denote the greatest common divisor of any two positive integers s and t by $\text{gcd}(s, t)$ (or simply (s, t)) and $s | t$ means that s is a divisor of t. In section 2, we will show that all orbits under the regular action on X_n by G_n consists of $o(x)$ for all divisors $x(\neq 1, n)$ of n by investigating that for all $x, y \in X_n$, $o(x) = o(y)$ if and only if $(x, n) = (y, n)$. We can also show that for all $x, y \in X_n$, $\text{ann}(x) = \text{ann}(y)$ if and only if $(x, n) = (y, n)$.

In section 3, we will show that for any positive integer n, (1) $\sum_{g \in G_n} g \equiv 0 \pmod{n}$; (2) for any orbit $o(x)$ ($x \in X_n$) with $|o(x)| \geq 2$, $\sum_{y \in o(x)} y \equiv 0 \pmod{n}$. As a corollary of the result (2), we obtain $\sum_{d|n} \phi(d) = n$ where $\phi(d)$ is the Euler-phi number of d.

Received December 12, 2016; Accepted February 13, 2017.

2010 Mathematics Subject Classification. 16W22, 11A07.

Key words and phrases. regular group action, orbit, stabilizer.

This study was supported by research funds from Dong-A University.

©2017 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)
2. Orbits and annihilators under the regular action

We begin this section with some lemmas.

Lemma 2.1. Let n be any positive integer and $x, y \in X_n$ be divisors of n such that $x < y$ and $x \neq y$. Then $o(x) \neq o(y)$ under the regular action on X_n by G_n.

Proof. Assume that $o(x) = o(y)$. Then $y = gx$ for some $g \in G_n$. Since x, y are divisors of n such that $x < y$ and $x \neq y$, we can choose an element $a \in X_n$ so that $ax \neq 0, ay = 0$. On the other hand, since $0 = ay = a(gx)$ and $g \in G_n$, we have $ax = 0$, which is a contradiction. Hence $o(x) \neq o(y)$. □

Lemma 2.2. Let n be any positive integer and $y \in X_n$ be arbitrary. Then there exists $x \in X$ such that $x|n$ and $(x, n) = (y, n)$.

Proof. Let $x = (y, n)$. Then clearly, $x|n$ and $(x, n) = ((y, n), n) = (y, n)$. □

Lemma 2.3. Let k and n be any positive integers such that $k|n$. If $\bar{g} \in G_k$, then there exists $g \in G_n$ such that $g \equiv \bar{g} \pmod{k}$.

Proof. Note that since $k|n$, $\mathbb{Z}_n/\langle k \rangle$ is isomorphic to \mathbb{Z}_k where $\langle k \rangle$ is an ideal of \mathbb{Z}_n generated by k. Let $n = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ be the prime factorization of n where p_1, p_2, \ldots, p_t are distinct primes for some positive integer t. Let $k = \prod_{i=1}^{t} p_i^{\beta_i}$ with $\beta_i \geq 1$ for all $i = 1, \ldots, t$. Without loss of generality, we can assume that $\mathbb{Z}_n = \mathbb{Z}_{p_1^{\alpha_1}} \times \mathbb{Z}_{p_2^{\alpha_2}} \cdots \times \mathbb{Z}_{p_t^{\alpha_t}}$ (resp. $\mathbb{Z}_k = \mathbb{Z}_{p_1^{\beta_1}} \times \mathbb{Z}_{p_2^{\beta_2}} \cdots \times \mathbb{Z}_{p_t^{\beta_t}}$). Then we can consider a ring epimorphism $\pi : \mathbb{Z}_{p_1^{\alpha_1}} \times \mathbb{Z}_{p_2^{\alpha_2}} \cdots \times \mathbb{Z}_{p_t^{\alpha_t}} \rightarrow \mathbb{Z}_{p_1^{\beta_1}} \times \mathbb{Z}_{p_2^{\beta_2}} \cdots \times \mathbb{Z}_{p_t^{\beta_t}}$ given by $\pi(a_1, \ldots, a_t) = (\bar{a}_1, \ldots, \bar{a}_t)$ for all $(a_1, \ldots, a_t) \in \mathbb{Z}_{p_1^{\alpha_1}} \times \mathbb{Z}_{p_2^{\alpha_2}} \cdots \times \mathbb{Z}_{p_t^{\alpha_t}}$, where \bar{a}_i is the remainder obtained from dividing a_i by $p_i^{\beta_i}$ for all i.

Case 1. Suppose that $\beta_i \geq 1$ for all $i = 1, \ldots, t$.

Let $\bar{g} = (\bar{g}_1, \ldots, \bar{g}_t) \in \mathbb{Z}_{p_1^{\beta_1}} \times \mathbb{Z}_{p_2^{\beta_2}} \cdots \times \mathbb{Z}_{p_t^{\beta_t}}$ be an arbitrary unit. Then there exists an element $g = (g_1, \ldots, g_t) \in \mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_t^{\alpha_t}}$ such that $\pi(g) = \bar{g}$ i.e., $g_i \equiv \bar{g}_i \pmod{p_i^{\beta_i}}$ for all i. Since \bar{g} is a unit in $\mathbb{Z}_{p_1^{\beta_1}} \times \mathbb{Z}_{p_2^{\beta_2}} \cdots \times \mathbb{Z}_{p_t^{\beta_t}}$, we have $(\bar{g}_1, p_1^{\beta_1}) = 1$ and so $(\bar{g}_i, p_i^{\beta_i}) = 1$ for all $i = 1, \ldots, t$, which implies that $g \in \mathbb{Z}_n$ is a unit.

Case 2. Suppose that $\beta_i = 0$ for some i.

Let $I_1 = \{i \in \{1, \ldots, t\} : \beta_i \geq 1 \}$ and $I_2 = \{i \in \{1, \ldots, t\} : \beta_i = 0 \}$. Consider $R = R_1 \times R_2$ where $R_1 = \prod_{i \in I_1} \mathbb{Z}_{p_i^{\alpha_i}}$ and $R_2 = \prod_{i \in I_2} \mathbb{Z}_{p_i}$ where I_1 is the unity of $\mathbb{Z}_{p_i^{\alpha_i}}$. By changing the order of the $\mathbb{Z}_{p_i^{\alpha_i}}$ if necessary we can assume that $R = \mathbb{Z}_k = \mathbb{Z}_{p_1^{\beta_1}} \times \mathbb{Z}_{p_2^{\beta_2}} \cdots \times \mathbb{Z}_{p_t^{\beta_t}}$. Let $G(R)$ be the group of all units in R. Let $\bar{g} = (\bar{g}_1, \ldots, \bar{g}_{|I_1|}, 1, \ldots, 1_{|I_2|}) \in G(R)$ be arbitrary. Then by the similar argument given in Case 1, there exists a unit $g_i \in \mathbb{Z}_{p_i^{\alpha_i}}$ such that $g_i \equiv \bar{g}_i \pmod{p_i^{\beta_i}}$ for all $i = 1, \ldots, |I_1|$. Let $g = (g_1, \ldots, g_{|I_1|}, 1, \ldots, 1_{|I_2|}) \in \mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_t^{\alpha_t}}$. Then g is a unit in $\mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_t^{\alpha_t}}$ such that $\pi(g) = \bar{g}$. □
Theorem 2.4. Let n be any positive integer. Then for all $x, y \in X_n$, $o(x) = o(y)$ if and only if $(x, n) = (y, n)$.

Proof. (\Rightarrow) Suppose that for all $x, y \in X_n$, $o(x) = o(y)$. Then $y = gx$ for some $g \in G_n$. Since $(g, n) = 1$, we have $(y, n) = (gx, n) = (x, n)$.

(\Leftarrow) Suppose that for all $x, y \in X_n$, $(x, n) = (y, n)$. It is enough to consider $x|n$, i.e., $x = (x, n)$ by Lemma 2.2. Since $x|y$, $y = ax$ for some integer a. Since $x = (y, n)$, $x = by + cn$ for some integers b and c. Hence $x \equiv by \equiv bax \pmod{n}$, and then $1 \equiv ba \pmod{n}$. Let \bar{a} be an element of \mathbb{Z}_n so that $a \equiv \bar{a} \pmod{n}$. Then $1 \equiv b\bar{a} \pmod{n}$, which implies that $\bar{a} \in G_{\frac{n}{a}}$. By Lemma 2.3, there exists $a_0 \in G_n$ such that $a_0 \equiv \bar{a} \pmod{n}$. Since $a_0 = \bar{a} + k\left(\frac{n}{a}\right)$ for some integer k, we have $a_0x \equiv (\bar{a} + k\left(\frac{n}{a}\right))x \equiv \bar{a}x \equiv ax \equiv y \pmod{n}$, which implies that $o(x) = o(y)$. \hfill \Box

Remark 1. (1) Let n be any positive integer. Then the number of orbits under the regular action on X_n by G_n is equal to the number of divisors $(\neq 1, n)$ of n by Lemma 2.1 and Theorem 2.4.

(2) The regular action on X_n by G_n is transitive, i.e., $X_n = o(x)$ for some $x \in X_n$ if and only if $n = p^2$ for some prime p.

Corollary 2.5. Let n be a positive integer and $x(\neq 1, n)$ be a divisor of n. Then $o(x) = \{gx : \forall g \in G_{\frac{n}{x}}\}$, and so $|o(x)| = |G_{\frac{n}{x}}|$.

Proof. Let $y \in o(x)$ be arbitrary. By Theorem 2.4, $(x, n) = (y, n)$. Since x is a divisor of n, $x = (x, n) = (y, n)$, and so $1 = \left(\frac{n}{x}, \frac{n}{y}\right)$. Thus $\frac{n}{x} \in G_{\frac{n}{y}}$, and then $y = gx$ for some $g \in G_{\frac{n}{y}}$. Assume that there exist $g_1, g_2 \in G_{\frac{n}{y}}$ ($g_1 \neq g_2$) such that $g_1x = g_2x$. Then $(g_1 - g_2)x \equiv 0 \pmod{n}$, which implies that $g_1 - g_2 \equiv 0 \pmod{n}$. Since $g_1 - g_2 \in \mathbb{Z}_{\frac{n}{x}}$, $g_1 - g_2 = 0$, a contradiction. Hence $o(x) = \{gx : g \in G_{\frac{n}{y}}\}$, and so $|o(x)| = |G_{\frac{n}{x}}|$. \hfill \Box

Example 1. Consider \mathbb{Z}_{36}. Then $G_{36} = \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$, $X_{36} = \{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34\}$. Thus all the distinct orbits under the regular action on X_{36} by G_{36} are obtained as follows:

\begin{itemize}
 \item $o(2) = \{y \in X_{36} : (2, 36) = (y, 36)\} = \{2, 10, 14, 22, 26, 34\}$,
 \item $o(3) = \{y \in X_{36} : (3, 36) = (y, 36)\} = \{3, 15, 21, 33\}$,
 \item $o(4) = \{y \in X_{36} : (4, 36) = (y, 36)\} = \{4, 8, 16, 20, 28, 32\}$,
 \item $o(6) = \{y \in X_{36} : (6, 36) = (y, 36)\} = \{6, 30\}$,
 \item $o(9) = \{y \in X_{36} : (9, 36) = (y, 36)\} = \{9, 27\}$,
 \item $o(12) = \{y \in X_{36} : (12, 36) = (y, 36)\} = \{12, 24\}$,
 \item $o(18) = \{y \in X_{36} : (18, 36) = (y, 36)\} = \{18\}$.
\end{itemize}

Also we can have
\[|o(2)| = |G_{18}| = 6, \quad |o(3)| = |G_{12}| = 4, \quad |o(4)| = |G_9| = 6, \quad |o(6)| = |G_6| = 2, \]
\[|o(9)| = |G_4| = 2, \quad |o(12)| = |G_3| = 2, \quad |o(18)| = |G_2| = 1. \]

Corollary 2.6. Let \(n \) be a positive integer. Then \(n = \sum_{x \mid n} \phi(x) \) where \(\phi(x) \) is the Euler-phi number of \(x \), i.e., \(\phi(x) = |G_x| \).

Proof. By Remark 1 and Corollary 2.5, \(|X_n| = \sum_{x \mid n} |o(x)| = \sum_{x \mid n} \phi(\frac{n}{x}) = \sum_{x \mid n} \phi(x)(x \neq 1, n) \) - (1). On the other hand, since \(Z_n \setminus \{0\} = X_n \cup G_n \), \(|X_n| = n - 1 - |G_n| = n - \phi(1) - \phi(n) \) - (2). By equalities (1) and (2), we have \(n = \phi(1) + \phi(n) + \sum_{x \mid n} \phi(x)(x \neq 1, n) = \sum_{x \mid n} \phi(x)(\forall x, x \mid n) \).

Remark 2.

(1) Let \(n \) be any positive integer. Then for all divisors \(x(\neq 1, n) \) of \(n \), we have that \(|\text{stab}(x)| = \frac{|G_n|}{|o(x)|} = \frac{\phi(\frac{n}{x})}{\phi(\frac{n}{x})} \) - (*) by Corollary 2.5.

(2) Let \(p \) be any prime and \(t \) be any positive integer. Then by the equality (*) we have that \(\text{stab}(p^{t-1}) = \frac{\phi(\frac{n}{x})}{\phi(\frac{n}{x})} = p^{t-1} \), and so \(\text{stab}(p^{t-1}) = \{1 + kp : k = 0, 1, \ldots, p^{t-1} - 1\} \) is the Sylow \(p \)-subgroup of \(G_{p^t} \).

(3) Let \(n \) be any even integer. Then by the equality (*) we also have that \(\phi(n) = \phi(2)|\text{stab}(\frac{n}{2})| = |\text{stab}(\frac{n}{2})| \), and so \(G_n = \text{stab}(\frac{n}{2}) \).

We will denote \(\text{ann}(x) \setminus \{0\} \) by \(\text{ann}(x)^* \).

Lemma 2.7. Let \(n \) be any positive integer and \(x, y \in X_n \) be divisors of \(n \) such that \(x < y \). Then \(\text{ann}(x)^* \neq \text{ann}(y)^* \).

Proof. Assume that \(\text{ann}(x)^* = \text{ann}(y)^* \). Since \(x, y \) are divisors of \(n \) such that \(x < y \) and \(x \neq n \), we can choose an element \(a \in X_n \) so that \(ax \neq 0, ay = 0 \), and so \(a \notin \text{ann}(x)^*, a \in \text{ann}(y)^* \), which is a contradiction. Hence \(\text{ann}(x)^* \neq \text{ann}(y)^* \).

Theorem 2.8. Let \(n \) be any positive integer. Then for all \(x, y \in X_n \), \((x, n) = (y, n) \) if and only if \(\text{ann}(x)^* = \text{ann}(y)^* \).

Proof. (\(\Rightarrow \)) Suppose that for all \(x, y \in X_n \), \((x, n) = (y, n) \). Then \(o(x) = o(y) \) by Theorem 2.4. Let \(a \in \text{ann}(x)^* \) be arbitrary. Then \(ax = 0 \). Since \(o(x) = o(y) \), \(y = gx \) for some \(g \in G_n \). Thus \(ay = a(gx) = g(ax) = 0 \), and so \(ay = 0 \), which implies that \(a \in \text{ann}(y)^* \), and so \(\text{ann}(x)^* \subseteq \text{ann}(y)^* \). Similarly, we can also show that \(\text{ann}(y)^* \subseteq \text{ann}(x)^* \).

(\(\Leftarrow \)) Suppose that for all \(x, y \in X_n \), \(\text{ann}(x)^* = \text{ann}(y)^* \). We can take \(x_0, y_0 \) such that divisors of \(n \), \(x_0, y_0 \in X_n \) such that \(x_0 = (x_0, n) = (x, n), y_0 = (y_0, n) = (y, n) \) by Lemma 2.2. By the similar argument given in the proof of (\(\Rightarrow \)), we have \(\text{ann}(x_0)^* = \text{ann}(x)^*, \text{ann}(y_0)^* = \text{ann}(y)^* \). Assume that \((x, n) \neq (y, n) \). Then \(x_0 \neq y_0 \), and so \(\text{ann}(x)^* \neq \text{ann}(y)^* \) by Lemma 2.7, a contradiction. Hence we have \((x, n) = (y, n) \).

Remark 3. Let \(n \) be any positive integer. Then the number of the \(\text{ann}(x)^* \)'s in \(X_n \) is equal to the number of divisors \((\neq 1, n) \) of \(n \) by Lemma 2.1 and Theorem
2.8. We observe that \(\text{ann}(x)^* \) in \(X_n \) is the union of some orbits under the regular action on \(X_n \) by \(G_n \).

Example 2. Consider \(Z_{36} \). Then \(\{2, 3, 4, 6, 9, 12, 18\} \) is the set of all divisors \((\neq 1, 36)\) of 36 given in Example 1. Thus we obtained all the \(\text{ann}(x)^* \)'s in \(X_{36} \) as follows:

\[
\begin{align*}
\text{ann}(2)^* &= \{18\} = o(18), \\
\text{ann}(3)^* &= \{12, 24\} = o(12), \\
\text{ann}(4)^* &= \{9, 18, 27\} = o(9) \cup o(18), \\
\text{ann}(6)^* &= \{6, 12, 18, 24, 30\} = o(6) \cup o(12) \cup o(18), \\
\text{ann}(9)^* &= \{4, 8, 12, 16, 20, 24, 28, 32\} = o(4) \cup o(12), \\
\text{ann}(12)^* &= \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33\} = o(3) \cup o(6) \cup o(9) \cup o(18), \\
\text{ann}(18)^* &= \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34\} = o(2) \cup o(4) \cup o(6) \cup o(12) \cup o(18).
\end{align*}
\]

3. Some properties of orbits under the regular action

Consider \(Z_{36} \). Then there are 7 distinct orbits under the regular action on \(X_{36} \) by \(G_{36} \) as in the Example 1.

\[
\begin{align*}
o(2) &= \{y \in X_{36} : (2, 36) = (y, 36)\} = \{2, 10, 14, 22, 26, 34\}, \\
o(3) &= \{y \in X_{36} : (3, 36) = (y, 36)\} = \{3, 15, 21, 33\}, \\
o(4) &= \{y \in X_{36} : (4, 36) = (y, 36)\} = \{4, 8, 16, 20, 28, 32\}, \\
o(6) &= \{y \in X_{36} : (6, 36) = (y, 36)\} = \{6, 30\}, \\
o(9) &= \{y \in X_{36} : (9, 36) = (y, 36)\} = \{9, 27\}, \\
o(12) &= \{y \in X_{36} : (12, 36) = (y, 36)\} = \{12, 24\}, \\
o(18) &= \{y \in X_{36} : (18, 36) = (y, 36)\} = \{18\}.
\end{align*}
\]

On the other hand, we have the following:

\[
\begin{align*}
\sum_{y \in G_{36}} y &\equiv 1 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 25 + 29 + 31 + 35 \equiv 0 \pmod{36}, \\
\sum_{y \in o(2)} y &\equiv 2 + 10 + 14 + 22 + 26 + 34 \equiv 0 \pmod{36}, \\
\sum_{y \in o(3)} y &\equiv 3 + 15 + 21 + 33 \equiv 0 \pmod{36}, \\
\sum_{y \in o(4)} y &\equiv 4 + 8 + 16 + 20 + 28 + 32 \equiv 0 \pmod{36}, \\
\sum_{y \in o(6)} y &\equiv 6 + 30 \equiv 0 \pmod{36},
\end{align*}
\]
Lemma 3.4. Let \(n \) be any positive integer. Then \(\sum_{g \in G_n} g \equiv 0 \pmod{n} \).

Proof. Since \(X_{p^t} = \{p, 2p, \ldots, (p^t - 1)p\} = \mathbb{Z}_{p^t} \setminus \{G_{p^t} \cup \{0\}\}, \) we have

\[
\sum_{g \in G_{p^t}} g = \sum_{a \in \mathbb{Z}_{p^t}} a - \sum_{x \in X_{p^t}} x
\]

\[
= (1 + 2 + \cdots + (p^t - 1)) - (p + 2p + \cdots + (p^t - 1)p)
\]

\[
= \frac{p^t(p^t-1)}{2} - \frac{p^t(p^t-1)}{2}
\]

\[
= \frac{p^t(p^t-1)}{2}, \text{ and so } \sum_{g \in G_{p^t}} g \equiv 0 \pmod{p^t} \text{ because } \frac{p^t-1}{2} \text{ is an integer for any prime } p. \]

\[\square\]

Theorem 3.2. Let \(n \) be any positive integer. Then \(\sum_{g \in G_n} g \equiv 0 \pmod{n} \).

Proof. Let \(p_1^{\alpha_1} \cdots p_s^{\alpha_s} \) be the prime factorization of \(n \) where \(p_i \) are all distinct primes and \(\alpha_i \geq 1 \) for all \(i = 1, \ldots, s \). Since \(\mathbb{Z}_n \) is isomorphic to \(\mathbb{Z}_{p_1^{\alpha_1}} \times \mathbb{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathbb{Z}_{p_s^{\alpha_s}}, \) \(G_n \) is also isomorphic to \(G_{p_1^{\alpha_1}} \times G_{p_2^{\alpha_2}} \times \cdots \times G_{p_s^{\alpha_s}}. \) Without loss of generality, we can assume that \(\mathbb{Z}_n = \mathbb{Z}_{p_1^{\alpha_1}} \times \mathbb{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathbb{Z}_{p_s^{\alpha_s}} \) (resp. \(G_n = G_{p_1^{\alpha_1}} \times G_{p_2^{\alpha_2}} \times \cdots \times G_{p_s^{\alpha_s}} \)). Since \(\sum_{g \in G_n} g = \sum_{(g_1, \ldots, g_s) \in G_{p_1^{\alpha_1}} \times \cdots \times G_{p_s^{\alpha_s}}} (g_1, \ldots, g_s) = (\sum_{g_1 \in G_{p_1^{\alpha_1}}} g_1, \ldots, \sum_{g_s \in G_{p_s^{\alpha_s}}} g_s) \) and \(\sum_{g_i \in G_{p_i^{\alpha_i}}} g_i \equiv 0 \pmod{p_i^{\alpha_i}} \) by Lemma 3.1 where \(0_i \) is the zero identity of \(G_{p_i^{\alpha_i}} \) for all \(i = 1, \ldots, s \), we have \(\sum_{g \in G_n} g \equiv 0 \pmod{n} \).

\[\square\]

Corollary 3.3. Let \(n \) be any positive integer. If \(n \) is odd (resp. even), then \(\sum_{x \in X_n} x \equiv 0 \pmod{n} \) (resp. \(\sum_{x \in X_n} x \equiv \frac{n}{2} \pmod{n} \)).

Proof. Note that \(\sum_{x \in X_n} x = \sum_{a \in \mathbb{Z}_n} a - \sum_{g \in G_n} g = \frac{n(n-1)}{2} - \sum_{g \in G_n} g \equiv \frac{n(n-1)}{2} \pmod{n} \) - (*) by Theorem 3.2. If \(n \) is odd, then \(\frac{n(n-1)}{2} \equiv 0 \pmod{n} \), and so \(\sum_{x \in X_n} x \equiv 0 \pmod{n} \) from the equality (*). If \(n \) is even, then \(\frac{n(n-1)}{2} + \frac{n}{2} = n(n/2) \). Since \(n/2 \) is integer, \(\frac{n(n-1)}{2} \equiv -\frac{n}{2} \equiv \frac{n}{2} \pmod{n} \), and so \(\sum_{x \in X_n} x \equiv \frac{n}{2} \pmod{n} \) from the equality (*).

\[\square\]

Lemma 3.4. Let \(n = p^t \) for any prime \(p \) and positive integer \(t \) \((t \geq 2) \). Then \(\sum_{y \in o(x)} y \equiv 0 \pmod{n} \) for any orbit \(o(x) \) \((|o(x)| \geq 2) \), under the regular action on \(X_n \) by \(G_n \).
Proof. Let \(x \in X_n \) be an arbitrary divisor of \(n \). Then \(x = p^k \) for some \(k (t - 1 \geq k \geq 2) \). Since \(o(p^i) = \{ y \in X_n : p^k = (n, y) \} \) by Theorem 2.4, \(o(p^k) = \{ ax \in X_n : a \in G_n \} = \{ p^k, 2p^k, \ldots, (p^t - 1)p^k \} \setminus \{ pp^k, 2pp^k, \ldots, (p^t - 1)p^k \} \). Hence we have
\[
\sum_{y \in o(p^i)} y
\equiv (1 + 2 + \cdots + (p^t - 1))p^k - (p + 2p + \cdots + (p^t - 1)p)p^k
\equiv \frac{(p^t - 1)p^k - (p^t - 1)p^k}{2}
\equiv (p^k \frac{p^t - 1}{2})p^t \equiv 0 \pmod{p^i}. \]
\(\square \)

Theorem 3.5. Let \(n \) be a positive integer. Then \(\sum_{y \in o(x)} y \equiv 0 \pmod{n} \) for any orbit \(o(x) \) (\(|o(x)| \geq 2\)) under the regular action on \(X_n \) by \(G_n \).

Proof. Let \(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_s^{\alpha_s} \) be the prime factorization of \(n \) where \(p_i^{\alpha_i} \) are all distinct primes and \(\alpha_i \geq 1 \) for all \(i = 1, \ldots, s \). Since \(Z_n \) is isomorphic to \(Z_{p_1^{\alpha_1}} \times Z_{p_2^{\alpha_2}} \times \cdots \times Z_{p_s^{\alpha_s}} \), \(G_n \) is also isomorphic to \(G_{p_1^{\alpha_1}} \times G_{p_2^{\alpha_2}} \times \cdots \times G_{p_s^{\alpha_s}} \). Without loss of generality, we can assume that \(Z_n = Z_{p_1^{\alpha_1}} \times Z_{p_2^{\alpha_2}} \times \cdots \times Z_{p_s^{\alpha_s}} \) (resp. \(G_n = G_{p_1^{\alpha_1}} \times G_{p_2^{\alpha_2}} \times \cdots \times G_{p_s^{\alpha_s}} \)). Let \(x = (x_1, x_2, \ldots, x_s) \in X_n \) be arbitrary and \(o_i \) be the additive identity of \(Z_{p_i^{\alpha_i}} \) for all \(i = 1, \ldots, s \). By assumption, it is enough to show that for all \(x_i \in Z_{p_i^{\alpha_i}}, \sum_{y_i \in o(x_i)} y_i \equiv 0 \pmod{p_i^{\alpha_i}} \). Observe that if \(x_i \in X_{p_i^{\alpha_i}}, \) then \(\sum_{y_i \in o(x_i)} y_i \equiv 0 \pmod{p_i^{\alpha_i}} \) by Lemma 3.4; if \(x_i \in G_{p_i^{\alpha_i}}, \) then \(\sum_{g \in G_{p_i^{\alpha_i}}} gx_i \equiv \sum_{g \in G_{p_i^{\alpha_i}}} g \equiv 0 \pmod{p_i^{\alpha_i}} \) by Lemma 3.1; if \(x_i = o_i, \) then clearly, \(\sum_{g \in G_{p_i^{\alpha_i}}} g0_i \equiv 0 \pmod{p_i^{\alpha_i}} \). Hence we have the result. \(\square \)

References

JINSUK JEONG

DEPARTMENT OF MATHEMATICS

DONG-A UNIVERSITY

PUSAN, 49315, KOREA

E-mail address: jsjeong@donga.ac.kr

SANGWON PARK

DEPARTMENT OF MATHEMATICS

DONG-A UNIVERSITY

PUSAN, 49315, KOREA

E-mail address: swpark@donga.ac.kr