고출력 에너지 변환시스템인 thermopower wave 기술 동향 및 전망

  • 장한별 (광주과학기술원 신소재공학부) ;
  • 문승필 (한국전력공사 에너지밸리연구센터) ;
  • 함문호 (광주과학기술원 신소재공학부)
  • Published : 2017.06.01

Abstract

Keywords

References

  1. 주대영. 초연결시대 사물인터넷(IoT)의 활성화 방안. KIET 산업경제, 9, 16 (2014).
  2. Choi, W. et al. Chemically driven carbon-nanotubeguided thermopower waves. Nature-Materials 9, 423 (2010). https://doi.org/10.1038/nmat2714
  3. Yeo, T. et al. Effects of chemical fuel composition on energy generation from thermopower waves. Nanotechnology 25, 445403 (2014). https://doi.org/10.1088/0957-4484/25/44/445403
  4. Zeldovich, Y. B. et al. Theorv of flame propagation. Combustion and Flame 3, 61 (1959). https://doi.org/10.1016/0010-2180(59)90007-0
  5. Walia, S. et al. $Sb_2Te_3$ and $Bi_2Te_3$ based thermopower wave sources. Energy & Environmental Science 4, 3558 (2011). https://doi.org/10.1039/c1ee01370j
  6. Hong, S. et al. Enhanced electrical potential of thermoelectric power waves by $Sb_2Te_3$-coated multiwalled carbon nanotube arrays. The Journal of Physical Chemistry C 117, 913 (2013). https://doi.org/10.1021/jp3116963
  7. Hwang, H. et al. Amplified Thermopower Waves in Large‐Area Carbon-Nanotube/Fuel Composites via Thermal Decomposition of Sodium Nitrate. Advanced Materials Interfaces 4, 1600908 (2017). https://doi.org/10.1002/admi.201600908
  8. Hwang, H. et al. Investigation of the effect of the structure of large-area carbon nanotube/fuel composites on energy generation from thermopower waves. Nanoscale Research Letters 9, 536 (2014). https://doi.org/10.1186/1556-276X-9-536
  9. Lee, K. Y. et al. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles. Nanoscale 7, 17071 (2015). https://doi.org/10.1039/C5NR03795F
  10. Walia, S. et al. Oscillatory thermopower waves based on $Bi_2Te_3$ films. Advanced Functional Materials 21, 2072 (2011). https://doi.org/10.1002/adfm.201001979
  11. Walia, S. et al. $MnO_2$-based thermopower wave sources with exceptionally large output voltages. The Journal of Physical Chemistry C 117, 9137 (2013). https://doi.org/10.1021/jp401731b
  12. Walia, S. et al. ZnO based thermopower wave sources. Chemical Communications 48, 7462 (2012). https://doi.org/10.1039/c2cc33146b
  13. Lee, K. Y. et al. Advanced thermopower wave in novel ZnO nanostructures/fuel composite. ACS Applied Materials & Interfaces 6, 15575 (2014). https://doi.org/10.1021/am504507w
  14. Song, F. et al. Giant Seebeck coefficient thermoelectric device of $MnO_2$ powder. Nanotechnology 23, 085401 (2012). https://doi.org/10.1088/0957-4484/23/8/085401
  15. Lee, K. Y. et al. Enhanced thermopower wave via nanowire bonding and grain boundary fusion in combustion of fuel/$CuO-Cu_2O-Cu$ hybrid composites. Journal of Materials Chemistry A 3, 5457 (2015). https://doi.org/10.1039/C5TA00150A
  16. Shin, D. et al. Thermopower wave-driven hybrid supercapacitor charging system. ACS Applied Materials & Interfaces 8, 31042 (2016). https://doi.org/10.1021/acsami.6b11334