DOI QR코드

DOI QR Code

Retrieval of LIDAR Aerosol Parameter Using Sun/Sky Radiometer at Gangneung, Korea

  • Shin, Sung-Kyun (Research Institute for Radiation-Satellite (RIRS), Gangneung-Wonju National University (GWNU)) ;
  • Lee, Kwon-Ho (Research Institute for Radiation-Satellite (RIRS), Gangneung-Wonju National University (GWNU)) ;
  • Lee, Kyu-Tae (Research Institute for Radiation-Satellite (RIRS), Gangneung-Wonju National University (GWNU))
  • Received : 2017.04.03
  • Accepted : 2017.05.01
  • Published : 2017.06.25

Abstract

The aerosol optical properties such as depolarization ratio (${\delta}$) and aerosol extinction-to-backscatter ratios (S, LIDAR ratio) and ${\AA}ngstr{\ddot{o}m$ exponent (${\AA}$) derived from measurement with AERONET sun/sky radiometer at Gangneung-Wonju National University (GWNU), Gangneung, Korea ($37.77^{\circ}N$, $128.87^{\circ}E$) during a winter season (December 2014 - February 2015) are presented. The PM concentration measurements are conducted simultaneously and used to identify the high-PM events. The observation period was divided into three cases according to the PM concentrations. We analysed the ${\delta}$, S, and ${\AA}$ during these high PM-events. These aerosol optical properties are calculated by the sun/sky radiometer data and used to classify a type of aerosols (e.g., dust, anthropogenic pollution). The higher values of ${\delta}$ with lower values of S and ${\AA}$ were measured for the dust particles. The mean values of ${\delta}$, S, and ${\AA}$ at 440-870 nm wavelength pair (${\AA}_{440-870}$) for the Asia dust were 0.19-0.24, 36-56 sr, and 0.48, respectively. The anthropogenic aerosol plumes are distinguished with the lower values of ${\delta}$ and higher values of ${\AA}$. The mean values of spectral ${\delta}$ and ${\AA}_{440-870}$ for this case varied 0.06-0.16 and 1.33-1.39, respectively. We found that aerosol columnar optical properties obtained from the sun/sky radiometer measurement are useful to identify the aerosol type. Moreover, the columnar aerosol optical properties calculated based on sun/sky radiometer measurements such as ${\delta}$, S, and ${\AA}$ will be further used for the validation of aerosol parameters obtained from LIDAR observation as well as for quantification of the air quality.

Keywords

References

  1. N. Bellouin, J. Quaas, J.-J. Morcrette, and O. Boucher, "Estimates of aerosol radiative forcing from the MACC re-analysis," Atmospheric Chemistry and Physics 13, 2045-2062 (2013). https://doi.org/10.5194/acp-13-2045-2013
  2. V. Ramanathan, P. Crutzen, J. Kiehl, and D. Rosenfeld, "Aerosols, climate, and the hydrological cycle," Science 294, 2119-2124 (2001). https://doi.org/10.1126/science.1064034
  3. J. E. Penner, X. Dong, and Y. Chen, "Observational evidence of a change in radiative forcing due to the indirect aerosol effect," Nature 427, 231-234 (2004). https://doi.org/10.1038/nature02234
  4. D. A. Lack, J. J. Corbett, T. Onasch, B. Lerner, P. Massoli, P. K. Quinn, T. S. Bates, D. S. Covert, D. Coffman, and B. Sierau, "Particulate emissions from commercial shipping: Chemical, physical, and optical properties," Journal of Geophysical Research: Atmospheres 114 (2009).
  5. M. Wild, H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kallis, V. Russak, and A. Tsvetkov, "From dimming to brightening: Decadal changes in solar radiation at Earth's surface," Science 308, 847-850 (2005). https://doi.org/10.1126/science.1103215
  6. A. Singh and S. Dey, "Influence of aerosol composition on visibility in megacity Delhi," Atmospheric Environment 62, 367-373 (2012). https://doi.org/10.1016/j.atmosenv.2012.08.048
  7. D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr, and F. E. Speizer, "An association between air pollution and mortality in six US cities," New England journal of medicine 329, 1753-1759 (1993). https://doi.org/10.1056/NEJM199312093292401
  8. K. H. Lee, Y. J. Kim, and M. J. Kim, "Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004," Atmospheric Environment 40, 5146-5155 (2006). https://doi.org/10.1016/j.atmosenv.2006.03.050
  9. P. Ginoux, J. M. Prospero, O. Torres, and M. Chin, "Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation," Environmental Modelling & Software 19, 113-128 (2004). https://doi.org/10.1016/S1364-8152(03)00114-2
  10. Y. M. Noh, D. Müller, D. H. Shin, H. L. Lee, J. S. Jung, K. H. Lee, M. Cribb, Z. Li, and Y. J. Kim, "Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea," Atmospheric Environment 43, 879-888 (2009). https://doi.org/10.1016/j.atmosenv.2008.10.058
  11. D. Kaskaoutis, M. Kalapureddy, K. Krishna Moorthy, P. Devara, P. Nastos, P. Kosmopoulos, and H. Kambezidis, "Heterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from ship-borne measurements of spectral AODs," Atmospheric Chemistry and Physics 10, 4893-4908 (2010). https://doi.org/10.5194/acp-10-4893-2010
  12. D. Kaskaoutis and H. Kambezidis, "Comparison of the Ångström parameters retrieval in different spectral ranges with the use of different techniques," Meteorology and Atmospheric Physics 99, 233-246 (2008). https://doi.org/10.1007/s00703-007-0279-y
  13. K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bulletin of the American Meteorological Society 72, 1848-1866 (1991). https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2
  14. S. Shin, D. Müller, Y. Kim, B. Tatarov, D. Shin, P. Seifert, and Y. M. Noh, "The retrieval of the Asian dust depolarization ratio in Korea with the correction of the polarization-dependent transmission," Asia-Pacific Journal of Atmospheric Sciences 49, 19-25 (2013). https://doi.org/10.1007/s13143-013-0003-4
  15. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, and A. Fix, "Depolarization ratio profiling at several wave-lengths in pure Saharan dust during SAMUM 2006," Tellus B 61, 165-179 (2009). https://doi.org/10.1111/j.1600-0889.2008.00396.x
  16. A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, "Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia," Journal of Geophysical Research: Atmospheres 109 (2004).
  17. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, "Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003," Geophysical Research Letters 31 (2004).
  18. J. D. Klett, "Lidar inversion with variable backscatter/extinction raiotios," Applied Optics 24, 1638-1643 (1985). https://doi.org/10.1364/AO.24.001638
  19. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, "Variability of absorption and optical properties of key aerosol types observed in worldwide locations," Journal of the Atmospheric Sciences 59, 590-608 (2002). https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
  20. O. Dubovik and M. D. King, "A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements," Journal of Geophysical Research 105, 20673-20696 (2000). https://doi.org/10.1029/2000JD900282
  21. B. N. Holben, T. Eck, I. Slutsker, D. Tanre, J. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, and T. Nakajima, "AERONET-A federated instrument network and data archive for aerosol characterization," Remote Sensing of Environment 66, 1-16 (1998). https://doi.org/10.1016/S0034-4257(98)00031-5
  22. D. Muller, B. Weinzierl, A. Petzold, K. Kandler, A. Ansmann, T. Muller, M. Tesche, V. Freudenthaler, M. Esselborn, and B. Heese, "Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape-independent particle properties," Journal of Geophysical Research: Atmospheres 115 (2010).
  23. K.-H. Lee, D. Müller, Y.-M. Noh, S.-K. Shin, and D.-H. Shin, "Depolarization ratio retrievals using AERONET sun photometer data," Journal of the Optical Society of Korea 14, 178-184 (2010). https://doi.org/10.3807/JOSK.2010.14.3.178
  24. M. Chin, A. Chu, R. Levy, L. Remer, Y. Kaufman, B. Holben, T. Eck, P. Ginoux, and Q. Gao, "Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and Sun photometer measurements," Journal of Geophysical Research: Atmospheres 109 (2004).
  25. S. Seo, J. Kim, H. Lee, U. Jeong, W. Kim, B. Holben, S.-W. Kim, C. Song, and J. Lim, "Estimation of PM 10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign," Atmospheric Chemistry and Physics 15, 319-334 (2015). https://doi.org/10.5194/acp-15-319-2015
  26. J. Kim, M. Choi, J. Lee, S. Lee, B. Holben, T. Eck, and M. Kim, "Analysis of aerosol optical properties over Korea during the 2015 MAPS-Seoul campaign using AERONET and GOCI," in AGU Fall Meeting Abstracts (2015).
  27. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, "Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust," Journal of Geophysical Research: Atmospheres 111 (2006).
  28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  29. F. Lopes, E. Landulfo, and M. Vaughan, "Evaluating CALIPSO's 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil," Atmospheric Measurement Techniques 6, 3281 (2013). https://doi.org/10.5194/amt-6-3281-2013
  30. S. E. Shin, C. H. Jung, and Y. P. Kim, "Estimation of the optimal heated inlet air temperature for the beta-ray absorption method: analysis of the PM10 concentration difference by different methods in coastal areas," Advances in Environmental Research 1, 69-82 (2012). https://doi.org/10.12989/aer.2012.1.1.069
  31. A. Stein, R. Draxler, G. Rolph, B. Stunder, M. Cohen, and F. Ngan, "NOAA's HYSPLIT atmospheric transport and dispersion modeling system," Bulletin of the American Meteorological Society 96, 2059-2077 (2015). https://doi.org/10.1175/BAMS-D-14-00110.1
  32. K. H. Lee, Y. J. Kim, W. von Hoyningen-Huene, and J. P. Burrow, "Spatio-temporal variability of satellite-derived aerosol optical thickness over Northeast Asia in 2004," Atmospheric Environment 41, 3959-3973 (2007). https://doi.org/10.1016/j.atmosenv.2007.01.048
  33. K. Lee and Y. Kim, "Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days," Atmospheric Measurement Techniques 3, 1771 (2010). https://doi.org/10.5194/amt-3-1771-2010
  34. N. Sugimoto and C. H. Lee, "Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths," Applied optics 45, 7468-7474 (2006). https://doi.org/10.1364/AO.45.007468
  35. S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, "Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask," Atmospheric Measurement Techniques 6, 1397 (2013). https://doi.org/10.5194/amt-6-1397-2013
  36. M. Chin, T. Diehl, O. Dubovik, T. Eck, B. Holben, A. Sinyuk, and D. Streets, "Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements," in Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences, pp. 3439 (2009).
  37. P. Tian, X. Cao, L. Zhang, X. Sun, L. Sun, T. Logan, J. Shi, Y. Wang, Y. Ji, Y. Lin, Z. Huang, T. Zhou, Y. Shi, and R. Zhang, "Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing," Atmospheric Chemistry and Physics 17, 2509-2523 (2017). https://doi.org/10.5194/acp-17-2509-2017
  38. W. D. Nicolantonio, I. Cazzaniga, A. Cacciari, M. Bresciani, and C. Giardino, "Synergy of multispectral and multisensors satellite observations to evaluate desert aerosol transport and impact of dust deposition on inland waters: study case of Laske Garda," Journal of Applied Sensing 9(1), 095980 (2015). https://doi.org/10.1117/1.JRS.9.095980
  39. D. Muller, M. Tesche, H. Eichler, R. Engelmann, D. Althausen, A. Ansmann, Y. Cheng, Y. Zhang, and M. Hu, "Strong particle light absorption over the Pearl River Delta (south China) and Beijing (north China) determined from combined Raman lidar and Sun photometer observations," Geophysical Research Letters 33 (2006).
  40. F. De Tomasi, A. Blanco, and M. R. Perrone, "Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization," Applied optics 42, 1699-1709 (2003). https://doi.org/10.1364/AO.42.001699
  41. A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, C. R. Trepte, R. A. Ferrare, K.-P. Lee, C. A. Hostetler, C. Kittaka, and R. R. Rogers, "The CALIPSO automated aerosol classification and lidar ratio selection algorithm," Journal of Atmospheric and Oceanic Technology 26, 1994-2014 (2009). https://doi.org/10.1175/2009JTECHA1231.1
  42. R. A. Ferrare, D. D. Turner, L. H. Brasseur, W. F. Feltz, O. Dubovik, and T. P. Tooman, "Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains," Journal of Geophysical Research: Atmospheres 106, 20333-20347 (2001). https://doi.org/10.1029/2000JD000144
  43. W.-N. Chen, Y.-W. Chen, C. C. Chou, S.-Y. Chang, P.-H. Lin, and J.-P. Chen, "Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan," Atmospheric Environment 43, 2700-2708 (2009). https://doi.org/10.1016/j.atmosenv.2009.02.059
  44. M. Tesche, A. Ansmann, D. Müller, D. Althausen, I. Mattis, B. Heese, V. Freudenthaler, M. Wiegner, M. Esselborn, and G. Pisani, "Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM," Tellus B 61, 144-164 (2009).
  45. K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. S. Reddy, F. Wagner, and R. Scheele, "Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean," Journal of Geophysical Research: Atmospheres 108 (2003).
  46. T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, and D. Troshkin, "Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan," Atmospheric Environment 36, 5479-5489 (2002). https://doi.org/10.1016/S1352-2310(02)00664-7
  47. A. T. Lambe, C. D. Cappa, P. Massoli, T. B. Onasch, S. D. Forestieri, A. T. Martin, M. J. Cummings, D. R. Croasdale, W. H. Brune, and D. R. Worsnop, "Relationship between oxidation level and optical properties of secondary organic aerosol," Environmental Science & Technology 47, 6349-6357 (2013). https://doi.org/10.1021/es401043j
  48. S.-K. Shin, D. Müller, C. Lee, K. H. Lee, D. Shin, Y. J. Kim, and Y. M. Noh, "Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia," Atmospheric Chemistry and Physics 15, 6707-20 (2015). https://doi.org/10.5194/acp-15-6707-2015
  49. M. Kim, S. Kim, S. Yoon, N. Sugimoto, and B. Sohn, "Characteristics of the lidar ratio determined from lidar and sky radiometer measurements in Seoul," Atmosphere 21, 57-67 (2011).
  50. W. Wang, W. Gong, F. Mao, Z. Pan, and B. Liu, "Measurement and study of lidar ratio by using a raman lidar in central China," International Journal of Environmental Research and Public Health 13, 508 (2016). https://doi.org/10.3390/ijerph13050508
  51. T. Sakai, T. Nagai, Y. Zaizen, and Y. Mano, "Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber," Applied Optics, 49(23), 4441-4449 (2010). https://doi.org/10.1364/AO.49.004441
  52. J. Huang, P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers, "Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX," Journal of Geophysical Research: Atmospheres 113, D23 (2008).
  53. Z. Liu, N. Sugimoto, and T. Murayama, "Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar," Applied Optics 41(15), 2760-2767 (2002). https://doi.org/10.1364/AO.41.002760
  54. J. Xin, Y. Wang, Z. Li, P. Wang, W. M. Hao, B. L. Nordgren, S. Wang, G. Liu, L. Wang, T. Wen, T. Sun, and B. Hu, "Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005," Journal of Geophysical Research 112, D05203 (2007).