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Abstract

Moments of stationary intervals and those of the counting process can be used for moment fittings of the point 

processes. As for the Markovian arrival processes, the moments of stationary intervals are given as a polynomial 

function of parameters whereas the moments of the counting process involve exponential terms. Therefore, moment 

fittings are more complicated with the counting process than with stationary intervals. However, in queueing network 

analysis, cross-correlation between point processes can be modeled more conveniently with counting processes than 

with stationary intervals. A Laplace-Stieltjies transform of the stationary intervals of MAP (3)s is recently proposed 

in minimal number of parameters. We extend the results and present the Laplace transform of the counting process 

of MAP (3)s. We also show how moments of the counting process such as index of dispersions for counts, IDC, and 

limiting IDC can be used for moment fittings. Examples of exact MAP (3) moment fittings are also presented on the 

basis of moments of stationary intervals and those of the counting process.
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1. Introduction

As a generalization of the Poisson process, the 

Markovian arrival process of order , MAP(), 

is a mixture of Poisson processes of which the 

arrival rate is dependent on   phases. Transi-

tions take place from one of   phases to another 

as a continuous time Markov chain with or with-

out an event of arrival. A MAP() is described 

by    parameters in two transition rate mat-

rices. As a special case of MAP()s, the Markov 

modulated Poisson process of order , MMPP(), 

is a mixture of exactly   Poisson processes and 

described by   parameters. Both MAP()s and 

MMPP()s can be used for modeling non-renew-

al processes and can be used for queueing net-

work analysis such as in decomposition approxi-

mation; see Heindl [7] and Ferng and Chang [6]. 

One of the main tasks in queueing network de-

composition analysis is the approximation of point 

processes by moment fittings which can be done 

with stationary intervals and/or the counting pro-

cess: see Kuehn [13], Shanthikumar and Buzacott 

[16], and Whitt [18]. In fact, counting processes 

are easier to deal with when cross-correlation be-

tween point processes should be taken into ac-

count; see Kim [9] and [10]. However, the Laplace 

transform (LT) of the counting process is much 

more complicated than the Laplace-Stieltjies trans-

form (LST) of the stationary intervals of MAP

()s. In fact, exact moment fitting procedures 

have been available only for stationary intervals 

of MAP(2)s; see Bodrog et al. [2]. Recently, Kim 

[11] proposed six different ways of exact moment 

fittings based on both stationary intervals and 

the counting process of MAP(2)s. Kim [12] also 

proposed an exact MAP(3) moment fitting based 

on stationary intervals as an application of mini-

mal LST representation of MAP()s. We extend 

the results in [12] and present the LT of the 

counting process of MAP(3)s. We also show how 

moments of the counting process such as index 

of dispersions for counts, IDC, and limiting IDC 

can be used for moment fittings. More researches 

on Markov processes and applications can be 

found in Chae [5], Jang and Bai [8], and Yoon 

[19].

The rest of the paper is organized as follows. 

In Section 2, we present preliminary results in 

the literature as well as definitions and notations 

for MAP(3)s. In Section 3, we show that the LT 

of the counting process of MAP(3)s can be writ-

ten in minimal number of parameters. By differ-

entiation and inverse Laplace transformation, we 

obtain moments of the counting process. In Sec-

tion 4, we propose exact moment fitting proce-

dures based on moments of both stationary in-

tervals and the counting process. Numerical ex-

amples of exact moment fittings are also pre-

sented for MAP(3)s in Section 5 followed by a 

conclusion.

2. Preliminaries

In this section, we introduce definitions and 

notations for MAP(3)s. Since minimal represen-

tations are crucial for exact moment fittings we 

also briefly review two minimal representations 

for MAP(3)s given in [12].

2.1 Notations and definitions

In general, a MAP(3) is represented by two 

rate matrices, 
 

, given in terms of 15 tran-

sition rate parameters ’s without arrivals and 

’s with arrivals. 
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where 
∑ ≠    and 

 


 . Then, 

≡
  is the infinitesimal generator of the 

continuous time Markov chain governing the 

transitions among 3 phases. Let   be the steady- 

state probability vector for , i.e.     and 

    where   is a column vector of ones. Also 

let   be the stationary probability vector for the 

embedded Markov chain  ≡ 
  , i.e.     

and   . If we let   be the arrival rate of a 

MAP(3), then we have  ≡.

2.2 A Minimal Moment Representation of MAP(3)s

Let   be a stationary interval of MAP(3)s and 

let  ≡  be the reduced marginal moment. 

Also, let   and   be two consecutive stationary 

intervals and let  ≡
 

  be the reduced 

joint moment. It is shown in Bodrog et al. [3] 

that the first   marginal moments and the 

first   lag-1 joint moments uniquely de-

termine all other moments of a MAP(). That 

is, the following set of nine moments is a minimal 

moment representation of a MAP(3); see Casale 

et al. [4] and Telek et al. [17] 
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2.3 A Minimal LST Representation of MAP(3)s

Kim [12] proposed a minimal Laplace-Stieljes 

transform of stationary intervals of MAP()s. 

The joint LST of two consecutive stationary in-

tervals of a MAP(3) is given as follows 

   ≡     

      
 

  


  


 

 
   

   

by which a set of minimal moments in (1) can 

be written in terms ≡  
 ≡ 
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2.4  Another Minimal Representation for MAP(3)s

For  ≡
 , let 

   and let   be the 2×2 

principal minor of . Then, the following set of 9 

parameters  ≡  ,  ≡      and 

 ≡
 

 
  is also proposed by Kim [12] as an 

alternative minimal representation for MAP(3)s. 
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In fact, the characteristic polynomials of the 

matrices  ,   and   are given as

   
 

   
 



   
 

where 

              

(7)

The following identity is also given in [12]. 
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where   is auxiliary parameter which is gi-

ven in terms of (  ); see Kim [12] for details. 

Note that      by Eqs. (10) and (11). 

It can be seen that     and that  ≡

 

2.5 Moment Fitting based on Moments of 

Stationary Intervals

In [12], a moment fitting procedure is given for 

MAP(3)s based on moments of stationary inter-

vals given in (1). First, moments are converted 

into     and   . By Eq. (2), we have 
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where 
 

 
 







  Fur-

thermore, the coefficient vector   is uniquely de-

termined by Eqs. (3)～(6) in terms of   and 

four joint moments as follows. 
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Second,     is converted into     

This procedure can be done in closed-form for 

MMPP(3)s. Otherwise, a non-linear system of 

equations needs to be solved by the definitions 

of   . Numerical examples show that   

 obtained in the second stage contains 9 rate 

parameters or less.

3. The Counting Process of 
MAP(3)s

3.1 Joint Laplace Transform and Moments of the 

Counting Process

The     representation can also be used 

for the Laplace transform of the counting proc-

ess associated with MAP(3)s. Let   be the num-

ber of arrivals in  . The probability generating 

function of   and its Laplace transform are giv-

en as 
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            ≡
  

              
  

respectively; see Lucantoni [14] and Neuts [15]. 

Moreover, it can be easily verified that its La-

place transform is given as follows in terms of 

    

  
 



















 




 










By differentiating   with respect to , we 

have 
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The -th factorial moments,  ≡


  

⋯   , can be obtained by the inverse 

Laplace transformation of 
   . That 

is, the first three factorial moments are obtained 

as follows 

 ≡ 
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First, we have

 ≡ 







 


 .

For higher moments, we introduce the follow-

ing notation to characterize the asymptotic vari-

ability of MAP(3)s.


   

   
 

  


 
  



   
  



It is shown below that 
   for Poisson 

process. The counterpart of   for MAP(2) can 

be found in Kim [11]. Let 
 

 . For 

higher moments, we consider the following two 

cases for the inverse transformation, i.e. 
  

≠  and 
  . For the case of 

 ≠, 

it can be shown that 

   
  


 


   


   



   


   


   


   

    




   


 

Note that    is real-valued even if 
   

is negative. The index of dispersion for counts 

(IDC),    ≡    is given as follows 
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If 


 , then 
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For both (19) and (20), the asymptotic varia-

bility is 

∞≡ lim
→∞

  

 .

3.2 Dependence among    and ∞

Let   and   be the two consecutive sta-

tionary intervals. Also, let   be the squared co-

efficient of variation of  , i.e.  ≡ . 

We introduce another simplifying notation   as 

follows 

       ≡  
  

 





  


Then,      and ∞  can be written 

in terms of   and   as follows 

  

 ,

∞  





 

  








 

which reduces to the following identity in terms 

of   
, and ∞

  




 ∞    (21)

Therefore, if   should be matched in a moment 

fitting, then there is only one more degree of 

freedom left for ∞  and  , 
.

4. MAP(3) Moment Fittings 
with the Counting Process

In this section, we present moment fitting pro-

cedures for MAP(3)s that account for the follow-

ing set of moments including   and/or ∞.  

∙     
 

 
  and ∞

∙          and 

∙           and ∞

As in [12], moment fitting procedures are done 

in two steps. First, moments are converted into 

    and   . Whenever first five marginal 

moments are used for fitting, the coefficients 



 

 
 

  are exactly determined by Eqs. (12)～

(14). However, the procedure based on four joint 

moments in [12] needs to be modified if   

and/or ∞  should be matched instead of one or 

more of joint moments. Note that   needs to 

be replaced whenever   and ∞  are matched 

by the dependence given in Eq. (21). We choose 

to replace   whenever   is matched.

Second,     is converted into ( ) by 

solving a non-linear system of equations by the 

definitions of     given in Section 2.4. Closed-

form formula is available for MMPP(3)s.

4.1 Fitting based on        , 

and ∞

 If the asymptotic variability ∞  should be 
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matched instead of  , then the moment fitting 

procedure in Kim [12] based on nine moments 

of stationary intervals (1) can be modified ac-

cordingly by the dependence among  , Cov (
  

), and ∞  given in (21). That is, ∞  can be 

exactly matched if we set 

  



∞ 

 
   (22)

Note that the coefficients 
 

 
 

 
  are 

exactly determined by Eqs. (12)～(14). By sol-

ving the following system of equations and (22) 

for   and    . 
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. The rest of the pa-

rameters can be determined as follows 
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4.2 Fitting based on        , 

and 

The coefficients     
  and  

  
  

  

are exactly determined by Eqs. (12)～(14) and 

(15)～(17) respectively. Then, we write 
 

   


 

  
  in terms of   and   for which 

we solve a system of two equations. That is, 

               
 




                 

                  

Furthermore, 
 

 
 

  can also be writ-

ten in terms of   and   by simultaneously 

solving Eqs. for 
 

  
 

  in (7), (9), and 

(10). Note that   can be written in terms of   

and   since it is given in terms of   ; see 

Appendix of [12] for the details.

Finally, Eqs. (19) or (20) along with   equa-

ted with 
 


  can be numerically solved 

together for   and  .

4.3 Fitting based on        

∞ and 

The coefficients 
 

 
 

 
  are exactly de-

termined by Eqs. (12)～(14). However, the co-

efficients      in Eqs. (15)～(17) are not de-

termined directly by the moments since   is not 

used for moment matching. Instead, 
 

 
   

are expressed in terms of   and   by Eq. (22). 

The rest of the procedure is the same as in Section 

4.2. That is,      can be written in terms 



26 김 선 교

of   and  . By Eqs. (7) and (8),       

can be written in terms of   and   which, in 

turn, can be numerically solved for by Eqs. (19) 

or (20) along with definition of  .

5. A Numerical Example of 
MAP(3) Moment Fittings

As a numerical example, consider the MMPP(4) 

given in Balc og~lu et al. [1] given as follows 
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(23)

for which the reduced moments of stationary 

intervals are given as 

           ,

         ,

              ,

           ,

         ∞  

From the marginal moments, the following co-

efficients are obtained 


 

 
 

 
      

By the moment fitting procedure described in 

based on 
 

 
 

 
 

 
 

, and ∞, 

we get 

        
   

along with 
   for which a MAP(3) 

can be obtained by the identities between     

and     given in Section 2.4. The MMPP(4) 

in (23) can be approximated as an MMPP(3) as 

follows 
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The conversion formula from     to   

   for MMPP(3)s is given in [12].

By the moment fitting procedure based on 

        , and , we get 

        
   

for which the following MMPP(3) can be ob-

tained as follows 
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.

By the moment fitting procedure based on 

       ,   and ∞, we get 

         
   

for which the following MMPP(3) can be ob-

tained 
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6. Conclusion

In this paper, we proposed a minimal repre-

sentation for the LT of the counting process as-

sociated with MAP(3)s. It is shown that the min-

imal representation for the LST of the stationary 

intervals can be used for LT of the counting 

process. Since the higher moments of the count-

ing process are given as exponential functions, 

moment fitting procedure is more complicated 

than when moments of stationary intervals are 

used. We derived the second moment of the coun-

ting process and developed moment fitting pro-

cedures based on moments of both stationary in-

tervals and counting process. Moment fittings 

including the third and higher-order moment of 

the counting process could be a direction of the 

future research.
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