DOI QR코드

DOI QR Code

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor

샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가

  • Received : 2017.01.24
  • Accepted : 2017.03.18
  • Published : 2017.06.25

Abstract

We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

본 논문은 400~900 nm 파장 대역을 갖는 가시광 및 근적외선 분광기의 조립 및 성능 평가에 대하여 보고한다. 본 분광기는 이 후 결상 망원경과 함께 시야각 ${\pm}7.68^{\circ}$을 갖는 f/2.5의 영상 분광기를 구성한다. 검출기로는 $24{\times}24{\mu}m$ 피치로 이뤄진 $640{\times}480$ 전하결합소자(CCD)가 적용된다. 분광기는 두 개의 동심 구면으로 구성된 오프터 타입이며, 분광을 위하여 2번째 거울이 회절격자 거울로 교체되어 있다. 본 논문에서 다루는 분광기 광학 설계가 제곱평균제곱근(root mean suqared, RMS) 파면 잔여 수차가 210 nm(파장 600 nm 기준, $0.35{\lambda}$)로 통상 적용되는 간섭계를 이용한 이중 경로 광학 측정법 적용이 어렵고, 또한 측정 및 정렬의 용이성을 고려하여 샤크-하트만 센서를 적용한 단일 경로 파면 측정법을 적용하여 정렬 및 조립 절차를 수립하였다. 최종 조립 후 RMS 파면 오차 변화가 전 시야에 걸쳐 90 nm이내로 정렬되었음을 확인하였다. 이 후 조립 광학 구성을 유지한 채 2개 적층슬릿 지그를 이용하여 생성한 다중 핀 홀의 크립톤 램프 분광 이미지를 획득하였으며, 획득된 이미지의 분석을 통하여 조립 분광기의 분광 분해능, 키스톤 및 스마일이 각 4.32 nm, 0.08 픽셀 및 0.13 픽셀로 요구 사항을 만족하는 것을 확인하였다. 결론적으로 샤크-하트만 센서를 적용한 오프너 분광기의 조립 절차는 유효함을 확인하였다.

Keywords

References

  1. J. Li and Robert K. Y. Chan, "Toward a UV-visible-nearinfrared hyperspectral imaging platform for fast multiplex reflection spectroscopy," Opt. Lett. 35, 3330-3332 (2010). https://doi.org/10.1364/OL.35.003330
  2. F. G. France, "Advanced spectral imaging for noninvasive microanalysis of cultural heritage materials: review of application to documents in the U.S. library of congress," Appl. Spectrosc. 65, 565-574 (2011). https://doi.org/10.1366/11-06295
  3. K. Hege, D. O. Connell, W. Johnson, S. Basty, and E. Dereniak, "Hyperspectral imaging for astronomy and space surveillance," Proc. SPIE 5159, 380-391 (2003).
  4. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, and J. Wimperis, "Spatial heterodyne spectroscopy for high spectral resolution space-based remote sensing," Opt. Photonics News 15(1), 46-51 (2004).
  5. J. H. Lee, K. I. Kang, and J. H. Park, "A very compact imaging spectrometer for the micro-satellite STSAT3," Int. J. Remote Sensing 32, 3935-3946 (2011). https://doi.org/10.1080/01431161003801328
  6. Surface Optics Corp. Application, "Precision agriculture and hyperspectral sensors: Monitoring against drought, disease, and nutrient stress", https://surfaceoptics.com/applications/precision-agriculture-hyperspectral-sensors (2016).
  7. A. Bjorgan and L. L. Randeberg, "Towards real-time medical diagnostics using hyperspectral imaging technology," Proc. SPIE 9537, 953712 (2015).
  8. C. Coudrain, "SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures," Opt. Express 23, 16164-16176 (2015). https://doi.org/10.1364/OE.23.016164
  9. D. R. Lobb, "Theory of concentric designs for grating spectrometers," Appl. Opt. 33, 2648-2658 (1994). https://doi.org/10.1364/AO.33.002648
  10. D. R. Lobb, "Imaging spectromters using concentric optics," Proc. SPIE 3118, 339-347 (1997).
  11. X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente, "Analytical design of an Offner imaging spectrometer," Opt. Express 14, 9156-9168 (2006). https://doi.org/10.1364/OE.14.009156
  12. S. H. Kim, H. J. Kong, J. U. Lee, J. H. Lee, and J. H. Lee, "Design and construction of an Offner spectrometer based on geometrical analysis of ring fields," Rev. Sci. Instrum. 85, 083108 (2014). https://doi.org/10.1063/1.4892479
  13. H. S. Yang, Y. W. Lee, J. J. Kim, H. D. Eum, S. S. Lee, Y. S. Kim, and H. S. Kim, "Assembly of diameter 300 mm optical beam director," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 16, 521-526 (2005). https://doi.org/10.3807/KJOP.2005.16.6.521
  14. J. M. Beckers, "Adaptive Optics for Astronomy: Principles, Performance, and Applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993). https://doi.org/10.1146/annurev.aa.31.090193.000305
  15. B. C. Platt and R. Shack, "History and principles of shackhartmann wavefront sensing," Journal of Refractive Surgery. 17, S573-7 (2001).
  16. H. S. Jang, D. J. Jung, Y. C. Youk, S. Kim, D. H. Ko, and S. Lee, "Alignment method of secondary mirror of high resolution electro-optical payload using collimator and wave front sensor," Aerospace Engineering and Technology 10(2), 101-104 (2011).
  17. E. D. Kim, Y. Choi, and M. Kang, "Reverse-optimization alignment algorithm using Zernike sensitivity," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 9, 68-73 (2005).