DOI QR코드

DOI QR Code

Effects of ionizing and ultraviolet radiation on microbial mutation and DNA damage

전리방사선 및 자외선의 미생물 돌연변이와 DNA 손상에 대한 영향

  • Nam, Ji-Hyun (Department of Microbiology, Chungbuk National University) ;
  • Shin, Ji-Hye (Department of Microbiology, Chungbuk National University) ;
  • Lee, Jung-Yun (Department of Microbiology, Chungbuk National University) ;
  • Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
  • 남지현 (충북대학교 자연과학대학 미생물학과) ;
  • 신지혜 (충북대학교 자연과학대학 미생물학과) ;
  • 이정윤 (충북대학교 자연과학대학 미생물학과) ;
  • 이동훈 (충북대학교 자연과학대학 미생물학과)
  • Received : 2017.02.14
  • Accepted : 2017.03.21
  • Published : 2017.03.31

Abstract

Physical sterilization methods using ultraviolet radiation and ionizing radiation such as gamma ray and electron beam are applied in various industry fields due to disinfection effects and economic efficiency but may also cause microbial mutation. In this research, Salmonella enterica and Escherichia coli strains were treated with ionizing and ultraviolet radiation and their survival rate, mutation rate, and DNA damage were studied to evaluate the genetic safety. The survival rate of the strains decreased drastically as the irradiation dose of ultraviolet ray, gamma ray, and electron beam increased, and over 90% of the strain was exterminated at a dosage of $0.40{\sim}25.06mJ/cm^3$, 0.11~0.22 kGy, 0.14~0.53 kGy respectively. In SOS / umu-test, genotoxicity causing DNA damage was identified in all samples. In Ames test, back-mutation rate increased to $3.82{\times}10^{-4}$ and $9.84{\times}10^{-6}$ respectively when exposed to ultraviolet ray and gamma ray. At exposure to ultraviolet ray, gamma ray, and electron beam with dosage of over 99.99% extinction rate of S. enterica TA100, back-mutation rate increased 347 times, 220 times, 0.6 times respectively to the spontaneous back-mutation rate. Rifampicin resistance mutation rate of E. coli CSH100 exposed to ultraviolet ray, gamma ray, and electron beam was $2.46{\times}10^{-6}$, $1.66{\times}10^{-6}$, $4.12{\times}10^{-7}$ respectively. Therefore, gamma radiation is effective in microorganism control from the perspective of disinfection and electron beam has the advantage of sterilizing with little DNA damage and bacterial mutation.

감마선, 전자빔 등과 같은 전리방사선과 자외선을 이용하는 물리적 멸균방법은 살균 효과와 경제성이 우수하므로 다양한 산업분야에서 사용되고 있으나, 미생물의 돌연변이를 유발하는 요인으로 작용할 수 있다. 본 연구에서는 전리방사선 및 자외선의 유전학적 안전성을 평가하기 위해서 Salmonella enterica와 Escherichia coli 균주에 자외선, 감마선, 전자빔을 조사한 후에 생존율, 돌연변이율, DNA 손상 효과를 조사하였다. 자외선, 감마선, 전자빔의 조사선량이 증가함에 따라 시험 균주의 생존율이 모두 급격히 감소하였으며, 90% 이상이 사멸되는 조사선량은 각각 $0.40{\sim}25.06mJ/cm^3$, 0.11~0.22 kGy, 0.14~0.53 kGy 이었다. SOS/umu-test에서는 자외선, 감마선, 전자빔에 노출된 모든 시료에서 DNA 손상을 유발하는 유전독성이 확인되었다. Ames test에서는 자외선과 감마선에 노출된 후에 복귀 돌연변이율이 각각 $3.82{\times}10^{-4}$, $9.84{\times}10^{-6}$까지 증가하였다. S. enterica TA100의 사멸율이 99.99% 이상 되는 선량의 자외선, 감마선, 전자빔에서의 복귀 돌연변이율은 각각 자연돌연변이율 대비 347배, 220배, 0.6배 증가하였다. E. coli CSH100 균주를 자외선, 감마선, 전자빔에 노출시킨뒤에 조사한 리팜피신내성 돌연변이율은 각각 $2.46{\times}10^{-6}$, $1.66{\times}10^{-6}$, $4.12{\times}10^{-7}$ 이었다. 따라서 사멸효과의 관점에서는 감마선 처리가 미생물 제어에 효과적이라 할 수 있으며, 전자빔은 DNA 손상과 세균돌연변이를 적게 유발하며 사멸효과를 얻는 장점이 있다고 생각된다.

Keywords

References

  1. Ahmed, M.B., Zhou, J.L., Ngo, H.H., and Guo, W.S. 2016. Progress in the biological and chemical treatment technologies foremerging contaminant removal from wastewater: a critical review. J. Hazard. Mater. 323, 274-298.
  2. Al-Ani, M.Y. and Al-Khalidy, F.R. 2006. Use of ionizing radiation technology for treating municipal waste water. Int. J. Environ. Res. Public Health 3, 360-368. https://doi.org/10.3390/ijerph2006030047
  3. Blank, G. and Corrigan, D. 1995. Comparison of resistance of fungal spores to gamma and electron beam radiation. Int. J. Food Microbiol. 26, 269-277. https://doi.org/10.1016/0168-1605(94)00129-T
  4. Byun, M.Y. and Yook, H.S. 2003. International and external situation of irradiation technology utilization in the food and public health industry. Korean J. Food Preserv. 10, 106-123.
  5. DeMarini, D.M. 2000. Influence of DNA repair on mutation spectra in Salmonella. Mutat. Res. 450, 5-17. https://doi.org/10.1016/S0027-5107(00)00013-0
  6. Farkas, J. 2006. Irradiation for better foods. Trends Food Sci. Tech. 17, 148-152. https://doi.org/10.1016/j.tifs.2005.12.003
  7. Geoffrey, P.J. 2007. Validation of the radiation sterilization of pharmaceuticals, In James, P.A. and Carleton, F.J. (eds.). Validation of Pharmaceutical Processes, 3rd Ed. CRC Press, New York, USA.
  8. Ham, Y.K., Kim, H.W., Hwang, K.E., Song, D.H., Kim, Y.J., Choi, Y.S., Song, B.S, Park, J.H., and Kim, C.J. 2017. Effects of irradiation source and dose level on quality characteristics of processed meat products. Radiat. Phys. Chem. 130, 259-264. https://doi.org/10.1016/j.radphyschem.2016.09.010
  9. Han, B., Kim, J., Kim, Y., Choi, J.S., Makarov, I.E., and Ponomarev, A.V. 2005. Electron beam treatment of textile dyeing wastewater: operation of pilot plant and industrial plant construction. Water Sci. Technol. 52, 317-324. https://doi.org/10.2166/wst.2005.0708
  10. International Standard Organisation (ISO). 2000. Water quality determination of the genotoxicity of water and waste water using the umu-test (1st ed). ISO, Geneva, pp. 1-18, ISO 13829.
  11. James, D.L., Jaczynski, J., and Matak, K.E. 2010. Effect of electron beam irradiation on nalidixic acid-resistant Salmonella Montevideo in tomatoes. J. Food Safety 30, 515-525.
  12. Jeong, H. and Kim, K.R. 2010. Strain improvement based on ion beam-induced mutagenesis. Kor. J. Microbiol. Biotechnol. 38, 235-243.
  13. Kim, J.K., Song, B.S., Kim, J.H., Park, J.H., Byun, E.B., and Lee, J.W. 2013. Sterilization chracteristics of ionizing irradiation and its industrial application. J. Korean Musculoskelet. Tissue Transplant. Soc. 13, 49-57.
  14. Lee, H.J., Kim, G.R., Park, K.H., Kim, J.S., and Kim, J.H. 2015a. Effect of electron beam irradiation on microbiological and physicochemical properties of dried red pepper powders of different origin. Korean J. Food Sci. Technol. 47, 13-19. https://doi.org/10.9721/KJFST.2015.47.1.13
  15. Lee, O.M., Kim, H.Y., Park, W.S., and Yu, S.H. 2015b. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. J. Hazard. Mater. 295, 201-208. https://doi.org/10.1016/j.jhazmat.2015.04.016
  16. Lee, K.S, Kong, S.K., and Choi, S.Y. 2003. The protective effect of Ganoderma lucidum on the DNA damage and mutagenesis. J. Appl. Pharmacol. 11, 139-144.
  17. Levanduski, L. and Jaczynski, J. 2008. Increased resistance of Escherichia coli O157: H7 to electron beam following repetitive irradiation at sub-lethal doses. Int. J. Food Microbiol. 121, 328-334. https://doi.org/10.1016/j.ijfoodmicro.2007.11.009
  18. McNamara, N.P., Griffiths, R.I., Tabouret, A., Beresford, N.A., Bailey, M.J., and Whiteley, A.S. 2007. The sensitivity of a forest soil microbial community to acute gamma-irradiation. Appl. Soil Ecol. 37, 1-9. https://doi.org/10.1016/j.apsoil.2007.03.011
  19. Miller, J.H. 1992. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, USA.
  20. Min, J., Lee, C.W., and Gu, M.B. 2003. Gamma-radiation dose-rate effects on DNA damage and toxicity in bacterial cells. Radiat. Environ. Biophys. 42, 189-192. https://doi.org/10.1007/s00411-003-0205-8
  21. Mortelmans, K. and Zeiger, E. 2000. The Ames Salmonella / microsome mutagenicity assay. Mutat. Res. 455, 29-60. https://doi.org/10.1016/S0027-5107(00)00064-6
  22. Oda, Y., Kunihiro, F., Masaaki, K., Akihiko, N., and Taro, Y. 2004. Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ. Mol. Mutagen. 43, 10-19. https://doi.org/10.1002/em.10209
  23. Park, S.Y., Kang, S., and Ha, S.D. 2016. Inactivation of murine norovirus-1 in the edible seaweeds Capsosiphon fulvescens and Hizikia fusiforme using gamma radiation. Food Microbiol. 56, 80-86. https://doi.org/10.1016/j.fm.2015.12.006
  24. Rahman, B., Driscoll, T., Cowie, C., and Armstrong, B.K. 2010. Disinfection by-products in drinking water and colorectal cancer: a meta-analysis. Int. J. Epidemiol. 39, 733-745. https://doi.org/10.1093/ije/dyp371
  25. Sadecka, J. 2007. Irradiation of spices - a review. Czech J. Food Sci. 25, 231-242.
  26. Shehata, M.M., Gomaa, F.A.M., and Helal, Z.H. 2011. Effects of gamma and electron beam irradiation on viability and DNA elimination of Staphylococcus aureus. ACMicrob. 2, 1-9.
  27. Taghipour, F. 2004. Ultraviolet and ionizing radiation for microorganism inactivation. Water Res. 38, 3940-3948. https://doi.org/10.1016/j.watres.2004.06.016
  28. Tahri, L., Elgarrouj, D., Zantar, S., Mouhib, M., Azmani, A., and Sayah, F. 2010. Wastewater treatment using gamma irradiation: tetouan pilot station, Morocco. Radiat. Phys. Chem. 79, 424-428. https://doi.org/10.1016/j.radphyschem.2009.11.008
  29. Trampuz, A., Piper, K.E., Steckelberg, J.M., and Patel, R. 2006. Effect of gamma irradiation on viability and DNA of Staphylococcus epidermidis and Escherichia coli. J. Med. Microbiol. 55, 1271-1275. https://doi.org/10.1099/jmm.0.46488-0
  30. UNEP. 1995. Montreal protocol on substances that deplete the ozone layer. Report of the Methyl Bromide Technical Options Committee, 1994, 304.
  31. Waje, C.K, Jun, S.Y., Lee, Y.K., Kim, B.N., Han, D.H., Jo, C., and Kwon, J.H. 2009. Microbial quality assessment and pathogen inactivation by electron beam and gamma irradiation of commercial seed sprouts. Food Contr. 20, 200-204. https://doi.org/10.1016/j.foodcont.2008.04.005
  32. Xiang, Y., Wang, L., and Jiao, Y. 2016. Disintegration of excess sludge enhanced by a combined treatment of gamma irradiation and modified coal fly ash. Radiat. Phys. Chem. 120, 49-55. https://doi.org/10.1016/j.radphyschem.2015.11.035
  33. Yoo, J.H., Kim, B.R., Choi, N.Y., and Lee, S.Y. 2012. Efficacy of UV light against microorganism on foods. Safe Food 7, 26-34.
  34. Yun, H.J., Lim, S.Y., Song, H.P., Kim, B.K., Chung, B.Y., and Kim, D.H. 2007. Reduction of pathogenic bacteria in organic compost using gamma irradiation. Radiat. Phys. Chem. 76, 1843-1846. https://doi.org/10.1016/j.radphyschem.2007.02.093

Cited by

  1. 감마선, 전자선에 의한 멸균 비교분석 vol.14, pp.5, 2017, https://doi.org/10.7742/jksr.2020.14.5.537
  2. 비전리방사선을 이용한 미생물 균주 멸균효과 vol.14, pp.6, 2020, https://doi.org/10.7742/jksr.2020.14.6.833
  3. Effect of organic acid and ultraviolet-C treatment on putrefactive microorganisms and shelf-life of seasoned squid product vol.28, pp.5, 2021, https://doi.org/10.11002/kjfp.2021.28.5.578