DOI QR코드

DOI QR Code

Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties

  • Received : 2016.06.16
  • Accepted : 2017.01.31
  • Published : 2017.06.30

Abstract

A new approach for measuring the specific fracture energy of concrete denoted modified disk-shaped compact tension (MDCT) test is presented. The procedure is based on previous ideas regarding the use of compact tension specimens for studying the fracture behavior of concrete but implies significant modifications of the specimen morphology in order to avoid premature failures (such as the breakage of concrete around the pulling load holes). The manufacturing and test performance is improved and simplified, enhancing the reliability of the material characterization. MDCT specimens are particularly suitable when fracture properties of already casted concrete structures are required. To evaluate the applicability of the MDCT test to estimate the size-independent specific fracture energy of concrete ($G_F$),the interaction between the fracture process zone of concrete andthe boundary of theMDCTspecimens at the end of the test is properly analyzed. Further, the experimental results of $G_F$ obtained by MDCT tests for normal- and high-strength self-compacting concrete mixes are compared with those obtained using the well-established three-point bending test. The procedure proposed furnishes promising results, and the $G_F$ values obtained are reliable enough for the specimen size range studied in this work.

Keywords

References

  1. Abdalla, H. M., & Karihaloo, B. L. (2003). Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests. Magazine of Concrete Research, 55(2), 133-141. https://doi.org/10.1680/macr.2003.55.2.133
  2. Abou El-Mal, H. S. S., Sherbini, A. S., & Sallam, H. E. M. (2015). Mode II fracture toughness of hybrid FRCs. International Journal of Concrete Structures and Materials, 9(4), 475-486. doi:10.1007/s40069-015-0117-4.
  3. Amirkhanian, A., Spring, D., Roesler, J., Park, K., & Paulino, G. (2011). Disk-Shaped Compact Tension Test for Plain Concrete. In Transportation and Development Institute Congress 2011 (pp. 688-698). American Society of Civil Engineers. doi:10.1061/41167(398)66
  4. Amirkhanian, A., Spring, D., Roesler, J., & Paulino, G. (2016). Forward and inverse analysis of concrete fracture using the disk-shaped compact tension test. ASTM Journal of Testing and Evaluation, 44, 625-634.
  5. Bazant, Z. P. (1996). Analysis of work-of-fracture method for measuring fracture energy of concrete. Journal of Engineering Mechanics, ASCE, 122(2), 138-144. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2(138)
  6. Bazant, Z. P., & Kazemi, M. T. (1991). Size dependence of concrete fracture energy determined by RILEM work-of-fracture method. International Journal of Fracture, 51, 121-138.
  7. Bruhwiler, E., & Wittmann, F. H. (1990). The wedge splitting test: A method of performing stable fracture mechanics tests. Engineering Fracture Mechanics, 35(1-3), 117-125. https://doi.org/10.1016/0013-7944(90)90189-N
  8. Cifuentes, H., Alcalde, M., & Medina, F. (2013a). Measuring the size-independent fracture energy of concrete. Strain, 49(1), 54-59. https://doi.org/10.1111/str.12012
  9. Cifuentes, H., Garcia, F., Maeso, O., & Medina, F. (2013b). Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal- and high-strength FRC. Construction and Building Materials, 45, 130-137. https://doi.org/10.1016/j.conbuildmat.2013.03.098
  10. Cifuentes, H., & Karihaloo, B. L. (2013). Determination of size-independent specific fracture energy of normal- and high-strength self-compacting concrete from wedge splitting tests. Construction and Building Materials, 48, 548-553. https://doi.org/10.1016/j.conbuildmat.2013.07.062
  11. De Wilder, K., De Roeck, G., & Vandewalle, L. (2016). The use of advanced optical measurement methods for the mechanical analysis of shear deficient prestressed concrete members. International Journal of Concrete Structures and Materials, 10(2), 189-203. doi:10.1007/s40069-016-0135-x.
  12. Elices, M., Guinea, G. V., & Planas, J. (1992). Measurement of the fracture energy using three-point bend tests: Part 3-Influence of cutting the P-d tail. Materials and Structures, 25, 327-334. https://doi.org/10.1007/BF02472591
  13. Gopalaratnam, V. S., & Shah, S. P. (1987). SP105-01 Failure mechanisms and fracture of fiber reinforced concrete. ACI Special Publication, 105, 1-26.
  14. Guinea, G. V., Planas, J., & Elices, M. (1992). Measurement of the fracture energy using three-point bend tests: Part 1-Influence of experimental procedures. Materials and Structures, 25(4), 212-218. https://doi.org/10.1007/BF02473065
  15. Harkouss, R. H., & Hamad, B. S. (2015). Performance of high strength self-compacting concrete beams under different modes of failure. International Journal of Concrete Structures and Materials, 9(1), 69-88. doi:10.1007/s40069-014-0088-x.
  16. Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  17. Hu, X. Z., & Wittmann, F. H. (1992). Fracture energy and fracture process zone. Materials and Structures, 25(6), 319-326. https://doi.org/10.1007/BF02472590
  18. Issa, M., Issa, M., Islam, M., & Chudnovsky, A. (2000). Size effects in concrete fracture-Part II: Analysis of test results. International Journal of Fracture, 102(1), 25-42. doi:10.1023/A:1007677705861.
  19. Karihaloo, B. L. (1995). Fracture mechanics and structural concrete. USA: Longman Scientific and Technical Publishers.
  20. Karihaloo, B. L., Abdalla, H. M., & Imjai, T. (2003). A simple method for determining the true specific fracture energy of concrete. Magazine of Concrete Research, 55(5), 471-481. https://doi.org/10.1680/macr.2003.55.5.471
  21. Kim, M., Buttlar, W., Baek, J., & Al-Qadi, I. (2009). Field and laboratory evaluation of fracture resistance of Illinois hotmix asphalt overlay mixtures. Transportation Research Record: Journal of the Transportation Research Board, 2127, 146-154. doi:10.3141/2127-17.
  22. Korte, S., Boel, V., De Corte, W., & De Schutter, G. (2014). Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests. Construction and Building Materials, 57, 1-8. doi:10.1016/j.conbuildmat.2014.01.090.
  23. Kwon, S., Zhao, Z., & Shah, S. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve. Cement and Concrete Research, 38(8-9), 1061-1069. doi:10.1016/j.cemconres.2008.03.014.
  24. Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. doi:10.1007/s40069-014-0068-1.
  25. Linsbauer, H. N., & Tschegg, E. K. (1986). Fracture energy determination of concrete with cube-shaped specimens. Zement und Beton, 31, 38-40.
  26. Merta, I., & Tschegg, E. K. (2013). Fracture energy of natural fibre reinforced concrete. Construction and Building Materials, 40, 991-997. doi:10.1016/j.conbuildmat.2012.11.060.
  27. Muralidhara, S., Raghu Prasad, B. K., Karihaloo, B. L., & Singh, R. K. (2011). Size-independent fracture energy in plain concrete beams using tri-linear model. Construction and Building Materials, 25(7), 3051-3058. doi:10.1016/j.conbuildmat.2011.01.003.
  28. Nam, I. W., & Lee, H. K. (2015). Image analysis and DC conductivity measurement for the evaluation of carbon nanotube distribution in cement matrix. International Journal of Concrete Structures and Materials, 9(4), 427-438. doi:10.1007/s40069-015-0121-8.
  29. Nieto, B., Lozano, M., & Seitl, S. (2014). Determining fracture energy parameters of concrete from the modified compact tension test. Frattura ed Integrita Strutturale, 30, 383-393. doi:10.3221/IGF-ESIS.30.46.
  30. Pandey, S. R., Kumar, S., & Srivastava, A. K. L. (2016). Determination of double-K fracture parameters of concrete using split-tension cube: A revised procedure. International Journal of Concrete Structures and Materials. doi:10.1007/s40069-016-0139-6.
  31. Pinho, S. T., Robinson, P., & Iannucci, L. (2006). Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Composites Science and Technology, 66(13), 2069-2079. doi:10.1016/j.compscitech.2005.12.023.
  32. Planas, J., Elices, M., & Guinea, G. V. (1992). Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation. Materials and Structures, 25, 305-312. https://doi.org/10.1007/BF02472671
  33. RILEM. (1985). TCM-85: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 287-290. https://doi.org/10.1007/BF02472918
  34. RILEM. (2004). TC QFS: "Quasibrittle fracture scaling and size effect"- Final report. Materials and Structures, 37(8), 547-568. https://doi.org/10.1007/BF02481579
  35. RILEM. (2007). TC 187-SOC: Experimental determination of the stress-crack opening curve for concrete in tension. Final Report of RILEM Technical Committee.
  36. Shah, S. G., & Kishen, J. M. C. (2011). Fracture properties of concrete-concrete interfaces using digital image correlation. Experimental Mechanics, 51(3), 303-313. doi:10.1007/s11340-010-9358-y.
  37. Van Mier, J. G. M. (1991). Mode I fracture of concrete: Discontinuous crack growth and crack interface grain bridging. Cement and Concrete Research, 21(1), 1-15. doi:10.1016/0008-8846(91)90025-D.
  38. Vesely, V., Routil, L., & Seitl, S. (2011). Wedge-splitting test-determination of minimal starting notch length for various cement based composites part I: Cohesive crack modelling. Key Engineering Materials, 452-453, 77-80.
  39. Vydra, V., Trtik, K., & Vodak, F. (2012). Size independent fracture energy of concrete. Construction and Building Materials, 26(1), 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034
  40. Wagnoner, M. P., Buttlar, W. G., & Paulino, G. H. (2005). Disk-shaped compact tension test for asphalt concrete fracture. Experimental Mechanics, 45(3), 270-277. doi:10.1007/BF02427951.
  41. Wagoner, M., Buttlar, W., Paulino, G., & Blankenship, P. (2006). Laboratory testing suite for characterization of asphalt concrete mixtures obtained from field cores. Asphalt Paving Technology, 75, 815-852.
  42. Wittmann, F. H., Rokugo, K., Bruhwiler, E., Mihashi, H., & Simonin, P. (1988). Fracture energy and strain softening of concrete as determined by means of compact tension specimens. Materials and Structures, 21, 21-32. https://doi.org/10.1007/BF02472525
  43. Zofka, A., & Braham, A. (2009). Comparison of low-temperature field performance and laboratory testing of 10 test sections in the Midwestern United States. Transportation Research Record: Journal of the Transportation Research Board, 2127, 107-114. doi:10.3141/2127-13.

Cited by

  1. Fitting the fracture curve of concrete as a density function pertaining to the generalized extreme value family vol.129, pp.None, 2017, https://doi.org/10.1016/j.matdes.2017.05.030
  2. Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures vol.30, pp.11, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002491
  3. Research on Freeze-Thaw Cycles of Expansive Concrete in Civil and Repairing Engineering vol.1168, pp.None, 2017, https://doi.org/10.1088/1742-6596/1168/2/022047
  4. Four-point bending tests for the fracture properties of concrete vol.211, pp.None, 2019, https://doi.org/10.1016/j.engfracmech.2019.03.004
  5. Pure Mode I Fracture Toughness Determination in Rocks Using a Pseudo-Compact Tension (pCT) Test Approach vol.53, pp.7, 2020, https://doi.org/10.1007/s00603-020-02102-6
  6. Influence of Nanomaterials on Physical Mechanics and Durability of Concrete Composite Piers vol.216, pp.1, 2017, https://doi.org/10.1080/10584587.2021.1911262