DOI QR코드

DOI QR Code

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J. (Universidad Tecnica Particular de Loja, UTPL) ;
  • Marquez, Carmen O. (Universidad Nacional de Chimborazo) ;
  • Zuniga-Suarez, Alonso R. (Universidad Tecnica Particular de Loja, UTPL) ;
  • Zuniga-Torres, Berenice C. (Universidad Tecnica Particular de Loja, UTPL) ;
  • Villalta-Granda, Luis J. (Universidad Tecnica Particular de Loja, UTPL)
  • Received : 2016.04.14
  • Accepted : 2017.01.28
  • Published : 2017.06.30

Abstract

The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

Keywords

References

  1. Adams, G. G., & Nosonovsky, M. (2000). Contact modeling-forces. Tribology International, 33, 431-442. doi:10.1016/S0301-679X(00)00063-3.
  2. Akazawa, T. (1943). New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part 1). Journal of Japanese Civil Engineering Institute, 29, 777-787.
  3. Aliha, M. R. M. (2013). Indirect tensile test assessments for rock materials using 3-D disc-type specimens. Arabian Journal of Geosciences. doi:10.1007/s12517-013-1037-8.
  4. Andreev, G. E. (1991). A review of the Brazilian test for rock tensile strength determination. Part II: Contact conditions. Mining Science and Technology, 13, 457-465. doi:10.1016/0167-9031(91)91035-G.
  5. ASTM. (2003). C31/C 31M-03 Practica Normalizada para Preparacion y Curado de Especimenes de Ensayo de Concreto en la Obra. In Book of standards Vol. 04.02 concrete and aggregates. West Conshohocken, PA: ASTM International.
  6. ASTM. (2004). C496 Standard test method for splitting tensile strength of cylindrical concrete specimens. In Annual book of ASTM standards. West Conshohocken PA: ASTM International.
  7. ASTM. (2008). D3697-08 Standard test method for splitting tensile strength of intact rock core specimens. In Annual book of ASTM standards. West Conshohocken PA: ASTM International.
  8. ASTM. (2015). C1157/C1157M-11 Standard performance specification for hydraulic cement. In Book of standards Vol. 04.01 cement; lime; gypsum. West Conshohocken, PA: ASTM International.
  9. Awaji, H. (1977). Diametral compressive stress considering by the Hertzian contact. Journal of Materials Science, Japan, 27(295), 336-341.
  10. Birgisson, B., Mukhopadhyay, A. K., Georgene, G., Khan, M., & Sobolev, K. (2012). Nanotechnology in concrete materials: A synopsis. Washington, DC. Retrieved from www.TRB.org.
  11. BS. (1983). 1881-117 Testing concrete-Part 117. In Method for determination of tensile splitting strength. London: British Standards Institution.
  12. Cai, M. (2013). Fracture initiation and propagation in a Brazilian disc with a plane interface: A numerical study. Rock Mechanics and Rock Engineering, 46(2), 289-302. doi:10.1007/s00603-012-0331-1.
  13. Carmona, S. (2009). Efecto del tamano de la probeta y condiciones de carga en el ensayo de traccion indirecta. Materiales de Construccion, 59(294), 7-18. doi:10.3989/mc.2009.43307.
  14. Carmona, S., & Aguado, A. (2012). New model for the indirect determination of the tensile stress-strain curve of concrete by means of the Brazilian test. Materials and Structures, 45, 1473-1485. doi:10.1617/s11527-012-9851-0.
  15. Carneiro, F. L. L. B. (1943). A new method to determine the tensile strength of concrete. In 5th meeting of the Brazilian Association for Technical Rules, 3d. Section, (pp. 126-129). Associacao Brasileira de Normas Tecnicas-ABNT.
  16. Carothers, S. D. (1920). The direct determination of stress. Proceedings of the Royal Society of London, 97(682), 110-123. https://doi.org/10.1098/rspa.1920.0017
  17. Chen, X., Ge, L., Zhou, J., & Wu, S. (2017). Dynamic Brazilian test of concrete using split Hopkinson pressure bar. Materials and Structures. doi:10.1617/s11527-016-0885-6.
  18. Chen, X., Shao, Y., Chen, C., & Xu, L. (2016). Statistical analysis of dynamic splitting tensile strength of concrete using different types of jaws. Journal of Materials in Civil Engineering, 28(11), 4016117. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001635
  19. Chen, X., Wu, S., & Zhou, J. (2014). Quantification of dynamic tensile behavior of cement-based materials. Construction and Building Materials, 51, 15-23. doi:10.1016/j.conbuildmat.2013.10.039.
  20. Erarslan, N., Liang, Z. Z., & Williams, D. J. (2012). Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mechanics and Rock Engineering, 45, 739-751. doi:10.1007/s00603-011-0205-y.
  21. Frocht, M. M. (1947). Photoelasticity. New York: Wiley.
  22. Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society, A221, 163.
  23. Guo, H., Aziz, N. I., & Schmidt, L. C. (1993). Rock fracture-toughness determination by the Brazilian test. Engineering Geology, 33, 177-188. doi:10.1016/0013-7952(93)90056-I.
  24. Gutierrez Pulido, H., & Salazar, R. de la V. (2008). Analisis y diseno de experimentos. Igarss 2014 (2nd edn.). Mexico, DF.: McGraw-Hill Interamericana. doi:10.1007/s13398-014-0173-7.2.
  25. Hanus, M. J., & Harris, A. T. (2013). Progress in Materials Science Nanotechnology innovations for the construction industry. Progress in Materials Science, 58(7), 1056-1102. doi:10.1016/j.pmatsci.2013.04.001.
  26. Hashiba, K., & Fukui, K. (2015). Index of loading-rate dependency of rock strength. Rock Mechanics and Rock Engineering, 48(2), 859-865. doi:10.1007/s00603-014-0597-6.
  27. Hawkes, I., & Mellor, M. (1970). Uniaxial testing in rock mechanics laboratories. Engineering Geology, 4, 177-285.
  28. Hertz, H. (1895). Gesammelte Werke (Collected Works). Leipzig.
  29. Hondros, G. (1959). The evaluation of poisson's ratio and Young's modulus of materilas of a low tensile resistance by the Brazilian test. Australian Journal of Applied Science, 10(3), 243-268.
  30. Huang, Y. G., Wang, L. G., Lu, Y. L., Chen, J. R., & Zhang, J. H. (2014). Semi-analytical and numerical studies on the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-014-0676-8.
  31. Hung, K. M., & Ma, C. C. (2003). Technical note: Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions. Experimental Mechanics, 43(2), 216-224. doi:10.1177/0014485103043002011.
  32. IS. (1999). 5816:1999 splitting tensile strength of concrete method (1st revision, reaffirmed 2008). In CED 2: Cement and concrete. New Delhi: Bureau of Indian Standards.
  33. ISRM. (2007). Suggested methods for determining tensile strength of rock materials. In R. Ulusay & J. A. Hudson (Eds.), The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006 (pp. 177-184). ISRM.
  34. Japanese Industrial Standards. (1951). A-1113 Standard method of test for tensile strength of concrete.
  35. Komurlu, E., & Kesimal, A. (2014). Evaluation of indirect tensile strength of rocks using different types of jaws. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-014-0644-3.
  36. Kourkoulis, S. K., Markides, C. F., & Chatzistergos, P. E. (2013a). The standardized Brazilian disc test as a contact problem. International Journal of Rock Mechanics and Mining Sciences, 57, 132-141. doi:10.1016/j.ijrmms.2012.07.016.
  37. Kourkoulis, S. K., Markides, C. F., & Hemsley, J. A. (2013b). Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test. Acta Mechanica, 224(2), 255-268. doi:10.1007/s00707-012-0756-3.
  38. Lavrov, A., Vervoort, A., Wevers, M., & Napier, J. A. L. (2002). Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. International Journal of Rock Mechanics and Mining Sciences, 39(3), 287-302. doi:10.1016/S1365-1609(02)00038-2.
  39. Le, H. T., Nguyen, S. T., & Ludwig, H.-M. (2014). A study on high performance fine-grained concrete containing rice husk ash. Concrete Structures and Materials, 8(4), 301-307. doi:10.1007/s40069-014-0078-z.
  40. Li, D., & Wong, L. N. Y. (2013). The Brazilian disc test for rock mechanics applications: Review and new insights. Rock Mechanics and Rock Engineering, 46(2), 269-287. doi:10.1007/s00603-012-0257-7.
  41. Love, A. E. H. (1927). Mathematical theory of elasticity (4th ed.). London: Cambridge University Press.
  42. MacGregor, C. W. (1933). The potential function method for the solution of two-dimensional stress problems. Transactions of the American Mathematical Society, 38(1935), 177-186.
  43. Mala, K., Mullick, A. K., Jain, K. K., & Singh, P. K. (2013). Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend. International Journal of Concrete Structures and Materials, 7(3), 239-249. doi:10.1007/s40069-013-0049-9.
  44. Marguerre, K. (1933). Spannungsverteilung und Wellenausbreitung in der kontinuierlich gestutzten Platte. Ingenieur-Archiv, 4, 332-353. https://doi.org/10.1007/BF02081558
  45. Markides, C. F., & Kourkoulis, S. K. (2012). The stress field in a standardized Brazilian disc: The influence of the loading type acting on the actual contact length. Rock Mechanics and Rock Engineering, 45, 145-158. doi:10.1007/s00603-011-0201-2.
  46. Markides, C. F., & Kourkoulis, S. K. (2013). Naturally accepted boundary conditions for the Brazilian disc test and the corresponding stress field. Rock Mechanics and Rock Engineering, 46, 959-980. doi:10.1007/s00603-012-0351-x.
  47. McNeil, K., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61-69. doi:10.1007/s40069-013-0032-5.
  48. Mehdinezhad, M. R., Nikbakht, H., & Nowruzi, S. (2013). Application of nanotechnology in construction industry. Journal of Basic and Applied Scientific Research, 3(8), 509-519.
  49. Mellor, M., & Hawkes, I. (1971). Measurement of tensile stregth by diametral compression of discs and snnuli. Engineering Geology, 5, 173-225. doi:10.1016/j.enggeo.2008.06.006.
  50. Minitab Inc. (2009). Minitab statistical software. State College, PA, USA. Retrieved from www.minitab.com.
  51. Murty, B. S. M., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2013). Nanoscience nanotechnology. In B. Raj (Ed.). New Delhi: Springer. doi:10.1007/978-3-642-28030-6.
  52. Muskhelishvili, N. I. (1954). Some basic problems of the mathematical theory of elasticity: fundamental equations plane theory of elasticity torsion and bending. Springer-science Business Media, B. V. doi:10.1007/s13398-014-0173-7.2.
  53. Nadai, A. (1927). Darstellung ebener Spannungszustande mit Hilfe von winkeltreuen Abbildungen. Zeitschrift fur Physik, 41(1), 48-50. https://doi.org/10.1007/BF01454762
  54. NBR. (2010). 7222 Concreto e argamassa - Determinacao da resistencia a tracao por compressao diametral de corpos de prova cilindricos. Rio de Janeiro: ASSOCIACAO BRASILEIRA DE NORMAS TECNICAS.
  55. NCh. (1977). 1170: Of 77 Hormigon-Ensayo de traccion por hendimiento. Santiago de Chile: Instituto Nacional de Normalizacion.
  56. Newman, J. B. (2003). Strength-testing machines for concrete. In J. B. Newman & B. S. Choo (Eds.), Advanced concrete technology set: Testing and quality. New York: Elsevier Butterworth Heinemann. doi:10.1016/b978-075065686-3/50265-2.
  57. NTE-INEN. (2011). 2380:2011 Cemento hidraulico. Requisitos de desempeno para cementos hidraulicos. Quito Ecuador: Instituto Ecuatoriano de Normalizacion.
  58. Procopio, A. T., Zavaliangos, A., & Cunningham, J. C. (2003). Analysis of the diametrical compression test and the applicability to plastically deforming materials. Journal of Materials Science, 38, 3629-3639. doi:10.1023/A:1025681432260.
  59. RILEM. (1994). CPC6 Tension splitting of concrete specimen. In technical recommendation for the testing and use of construction materials (pp. 21-22). London: RILEM.
  60. Rocco, C., Guinea, G. V., Planas, J., & Elices, M. (2001). Review of the splitting-test standards from a fracture mechanics point of view. Cement and Concrete Research, 31, 73-82. doi:10.1016/S0008-8846(00)00425-7.
  61. Roux, S. (1998). Quasi-static contacts. In H. J. Herrmann, J.-P. Hovi, & S. Luding (Eds.), Physics of dry granular media (pp. 267-284). Dordrecht: Kluwer Academic Publishers.
  62. Sadd, M. H. (2009). Elasticity theory, applications and numerics. New York: Elsevier Inc.
  63. Satoh, Y. (1986). Position and load of failure by in Brazilian test: A numerical analysis by Griffith criterion. Journal of Materials Science, Japan, 140(36), 1219-1224.
  64. Sokolnikoff, L. S. (1956). Mathematical theory of elasticity. New York: McGraw-Hill.
  65. Tang, T. (1994). Effects of load-distributed width on split tension of unnotched and notched cylindrical specimens. Journal of Testing and Evaluation, 22(5), 401-409. doi:10.1520/JTE12656J.
  66. Tarifa, M., Poveda, E., Yu, R. C., Zhang, X., & Ruiz, G. (2013). Effect of loading rate on high-strength concrete: Numerical simulations. In J. G. M. Van Mier, G. Ruiz, C. Andrade, R. C. Yu, & X. X. Zhabg (Eds.), FraMCoS-8 (pp. 953-963).
  67. Timoshenko, S. (1924). The approximate solution of two dimensional problems in elasticity. Philosophical Magazine, 47, 1095-1104. https://doi.org/10.1080/14786442408634452
  68. Timoshenko, S., & Goodier, J. N. (1951). Theory of elasticity. New York, PA: The Maple Press Company.
  69. Timoshenko, S., & Goodier, J. N. (1969). Teoria de la elasticidad. Curso de fisica teorica. Elmsford: Pergamon Press.
  70. UNE-EN. (2001). 12390-6 Ensayos de hormigon endurecido-Parte 6: Resistencia a traccion indirecta de probetas. Madrid Espana: Asociacion Espanola de Normalizacion y Certificacion.
  71. Vorel, J., Smilauer, V., & Bittnar, Z. (2012). Multiscale simulations of concrete mechanical tests. Journal of Computational and Applied Mathematics, 236, 4882-4892. doi:10.1016/j.cam.2012.01.009.
  72. Wang, Q. Z., Jia, X. M., Kou, S. Q., Zhang, Z., & Lindqvist, P. A. (2004). The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. International Journal of Rock Mechanics and Mining Sciences, 41, 245-253. doi:10.1016/S1365-1609(03)00093-5.
  73. Wang, S. Y., Sloan, S. W., & Tang, C. A. (2014). Three-dimensional numerical investigations of the failure mechanism of a rock disc with a central or eccentric hole. Rock Mechanics and Rock Engineering, 47(6), 2117-2137. doi:10.1007/s00603-013-0512-6.
  74. Wendner, R., Vorel, J., Smith, J., Hoover, C. G., Bazant, Z. P., & Cusatis, G. (2014). Characterization of concrete failure behavior: A comprehensive experimental database for the calibration and validation of concrete models. Materials and Structures. doi:10.1617/s11527-014-0426-0.
  75. Wong, L. N. Y., & Jong, M. C. (2013). Water saturation effects on the Brazilian tensile strength of gypsum and assessment of cracking processes using high-speed video. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-013-0436-1.
  76. Yehia, S., Helal, K., Abusharkh, A., Zaher, A., & Istaitiyeh, H. (2015). Strength and durability evaluation of recycled aggregate concrete. International Journal of Concrete Structures and Materials, 9(2), 219-239. doi:10.1007/s40069-015-0100-0.
  77. Yoshiaki, S. (1980). Master Degree Desertation. Tokio University.
  78. Yu, Y., Yin, J., & Zhong, Z. (2006). Shape effects in the Brazilian tensile strength test and a 3D FEM correction. International Journal of Rock Mechanics and Mining Sciences, 43, 623-627. doi:10.1016/j.ijrmms.2005.09.005.
  79. Zain, M. F. M., Mahmud, H. B., Ilham, A., & Faizal, M. (2002). Prediction of splitting tensile strength of high-performance concrete. Cement and Concrete Research, 32, 1251-1258. doi:10.1016/S0008-8846(02)00768-8.
  80. Zhu, W. C., & Tang, C. A. (2006). Numerical simulation of Brazilian disk rock failure under static and dynamic loading. International Journal of Rock Mechanics and Mining Sciences, 43, 236-252. doi:10.1016/j.ijrmms.2005.06.008.

Cited by

  1. Computational Verification of the Optimum Boundary Condition of the Brazilian Tensile Test vol.51, pp.11, 2017, https://doi.org/10.1007/s00603-018-1553-7
  2. Improving measurement accuracy of Brazilian tensile strength of rock by digital image correlation vol.89, pp.11, 2017, https://doi.org/10.1063/1.5065541
  3. Dynamic Compressive and Tensile Characteristics of a New Type of Ultra-High-Molecular Weight Polyethylene (UHMWPE) and Polyvinyl Alcohol (PVA) Fibers Reinforced Concrete vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6382934
  4. Meso-scale analyses of size effect in brittle materials using DEM vol.21, pp.1, 2017, https://doi.org/10.1007/s10035-018-0862-6
  5. Halo approach to evaluate the stress distribution in 3D discrete element method simulation: validation and application to flax/bio based epoxy composite vol.27, pp.6, 2017, https://doi.org/10.1088/1361-651x/ab20d3
  6. Phase-field fracture simulations of the Brazilian splitting test vol.220, pp.1, 2017, https://doi.org/10.1007/s10704-019-00401-w
  7. Numerical assessment of rupture mechanisms in Brazilian test of brittle materials vol.180, pp.None, 2019, https://doi.org/10.1016/j.ijsolstr.2019.07.004
  8. A Novel Analytical Solution for the Brazilian Test with Loading Arcs vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/2935812
  9. Effect of High Temperature (600°C) on Mechanical Properties, Mineral Composition, and Microfracture Characteristics of Sandstone vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/5072534
  10. Refined assessment of strength of concrete pavement probabilistic method vol.832, pp.None, 2017, https://doi.org/10.1088/1757-899x/832/1/012037
  11. Lime-Based Mortar Reinforced by Randomly Oriented Short Fibers for the Retrofitting of the Historical Masonry Structure vol.13, pp.16, 2017, https://doi.org/10.3390/ma13163462
  12. Mechanical and electrical properties of MWCNTs - high early strength cement - mortars composite: Dispersion of CNTs and effect of chemical admixtures vol.93, pp.3, 2017, https://doi.org/10.1590/0001-3765202120200924
  13. Influence of Carbon Nanotubes on Traditional Material vol.1023, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/msf.1023.147
  14. Innovative Materials for Sustainable Construction vol.1023, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/msf.1023.155
  15. Numerical Simulation of the Effect of Loading Angle on Initial Cracks Position Point: Application to the Brazilian Test vol.11, pp.8, 2017, https://doi.org/10.3390/app11083573
  16. The effect of the third invariant on the strength and failure of boron carbide and silicon carbide vol.104, pp.5, 2017, https://doi.org/10.1111/jace.17615
  17. The Potential Use of Brick Wastes in the Generation of New Materials for Construction through Geopolymerization Processes vol.904, pp.None, 2021, https://doi.org/10.4028/www.scientific.net/kem.904.387