DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory effects of the ethyl acetate fraction of the Agastache rugosa extract

배초향 에틸아세테이트 분획의 산화방지 및 항염증 활성

  • Kim, Bomin (Department of Natural Medicine Resources, Semyung University) ;
  • Han, Yeong Eun (College of Pharmacy, Sookmyung Women's University) ;
  • Lee, Hwa Jin (Department of Natural Medicine Resources, Semyung University)
  • 김보민 (세명대학교 자연약재과학과) ;
  • 한영은 (숙명여자대학교 약학대학) ;
  • 이화진 (세명대학교 자연약재과학과)
  • Received : 2016.11.18
  • Accepted : 2017.01.10
  • Published : 2017.06.30

Abstract

To evaluate the antioxidant activity of hexane, ethyl acetate, and butanol fractions obtained from Agastache rugosa extract, we measured the total polyphenol levels, DPPH radical scavenging activity, and reducing power. The ethyl acetate fraction of A. rugosa (AREA) displayed high phenolic levels, potent DPPH radical scavenging effect, and powerful reducing power. In addition, we examined the ability of AREA to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 microglia. AREA suppressed NO production and inducible nitric oxide synthase (iNOS) expression and downregulated interleukin-6 (IL-6) mRNA level in LPS-stimulated BV-2 microglia. Furthermore, we detected rosmarinic acid in AREA by HPLC, which suggested that rosmarinic acid could be one of the bioactive materials responsible for the antioxidant and anti-inflammatory activities of AREA. These results suggested that AREA may be a good source of functional foods with antioxidant and anti-inflammatory activities.

배초향 추출물 및 분획별 생리활성 물질의 분포양상을 검정하기 위해 파이토케미컬 검색을 한 결과, 플라보노이드 확인시험에서 헥세인을 제외한 에틸아세테이트 및 부탄올 분획에서 양성반응을 확인하였다. 배초향 추출물의 극성에 따른 분획-헥세인, 에틸아세테이트 및 부탄올 분획의 산화방지 정도를 평가한 결과, 폴리페놀 함량, DPPH 라디칼 소거 및 환원력 실험에서 에틸아세테이트 분획이 다량의 폴리페놀을 함유하며 강력한 라디칼 소거 및 환원능력을 나타냈다. 또한 배초향 에틸아세테이트 분획의 항염 활성을 평가한 결과, 지방질다당류로 활성화된 BV-2 microglia에서 발생하는 과량의 산화질소(II) 생성을 억제하였을 뿐 아니라, 산화질소(II) 생성 효소인 iNOS 및 염증성 사이토카인 IL-6의 발현을 억제함을 확인하였다. 강력한 산화방지 및 항염증 활성을 나타내는 배초향 에틸아세테이트 분획내의 활성물질을 확인하고자 HPLC를 이용하여 분석한 결과, 배초향의 산화방지 물질로 잘 알려져 있는 로스마린산이 배초향 에틸아세테이트 분획에 함유되어 있음을 확인하였다.

Keywords

References

  1. Lee BY, Hwang JB. Physiochemical characteristics of Agastache rugosa O. Kuntze extract by extraction conditions. Korean J. Food Sci. Technol. 32: 1-8 (2000)
  2. Zielinska S, Matkowski A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 13: 391-416 (2014) https://doi.org/10.1007/s11101-014-9349-1
  3. Ahn B, Yang CB. Volatile flavor components of Bangah (Agastache rugosa O. Kuntze) herb. Korean J. Food Sci. Technol. 23: 582-586 (1991)
  4. Li HQ, Liu OZ, Liu ZL, Du SS, Deng ZW. Chemical composition and nematicidal activity of essential oil of against Agastache rugosa Meloidogyne incognita. Molecules 18: 4170-4180 (2013) https://doi.org/10.3390/molecules18044170
  5. Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi. J. Biol. Sci. 23: 524-530 (2016) https://doi.org/10.1016/j.sjbs.2016.02.020
  6. Shin S. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharm. Res. 27: 295-299 (2004) https://doi.org/10.1007/BF02980063
  7. Shin S, Kang CA. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 36: 111-115 (2003) https://doi.org/10.1046/j.1472-765X.2003.01271.x
  8. Kim JB, Kim JB, Cho KJ, Hwang YS, Park RD. Isolation, identification, and activity of rosmarinic acid, a potent antioxidant extracted from Korean Agastache rugosa. J Korean Soc. Agri. Chem. Biotechnol. 42: 262-266 (1999)
  9. Wang X, Perumalsamy H, Kwon HW, Na YE, Ahn YJ. Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer's disease. Sci. Rep. 5: 16127 (2015) https://doi.org/10.1038/srep16127
  10. Cho HI, Park JH, Choi HS, Kwak JH, Lee DU, Lee SK, Lee SM. Protective mechanisms of acacetin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. J. Nat. Prod. 77: 2497-2503 (2014) https://doi.org/10.1021/np500537x
  11. Vincent L, Chen W, Hong L, Mirshahi F, Mishal Z, Mirshahi-Khorassani T, Vannier JP, Soria J, Soria C. Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: Contribution to its anti-angiogenic effect. FEBS Lett. 495: 159-166 (2001) https://doi.org/10.1016/S0014-5793(01)02337-7
  12. Cho HI, Hong JM, Choi JW, Choi HS, Kwak JH, Lee DU, Lee SK, Lee SM. Beta-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. Eur. J. Pharmacol. 764: 613-621 (2015) https://doi.org/10.1016/j.ejphar.2015.08.001
  13. Moon H, Kim MJ, Son HJ, Kweon HJ, Kim JT, Kim Y, Shim J, Suh BC, Rhyu MR. Five hTRPA1 agonist found in indigenous Korean mint, Agastache rugosa. PLoS One. 10: e0127060 (2015) https://doi.org/10.1371/journal.pone.0127060
  14. Oh HM, Kang YJ, Lee YS, Park MK, Kim SH, Kim HJ, Seo HG, Lee HG, Lee JH, Chang KC. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW 264.7 cells from hydrogen peroxide-induced injury. J. Ethnopharmacol. 103: 229-235 (2006) https://doi.org/10.1016/j.jep.2005.08.030
  15. Kim HK, Lee HK, Shin CG, Huh H. HIV integrase inhibitory activity of Agastache rugosa. Arch. Pharm. Res. 22: 520-523 (1999) https://doi.org/10.1007/BF02979163
  16. Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 148: 183-193 (2016) https://doi.org/10.1016/j.lfs.2016.02.002
  17. Rivest S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9: 429-439 (2009) https://doi.org/10.1038/nri2565
  18. Li L, Lu J, Tay SS, Moochhala SM, He BP. The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res. 1159: 8-17 (2007) https://doi.org/10.1016/j.brainres.2007.04.066
  19. Lue LF, Kuo YM, Beach T, Walker DG. Microglia activation and anti-inflammatory regulation in Alzheimer's disease. Mol. Neurobiol. 41: 115-128 (2010) https://doi.org/10.1007/s12035-010-8106-8
  20. Uddin R, Saha MR, Subhan N, Hossain H, Jahan IA, Akter R. Alam A. HPLC-analysis of polyphenolic compounds in Gardenia jasminoides and determination of antioxidant activity by using free radical scavenging assays. Adv. Pharm. Bull. 4: 273-281 (2014)
  21. Aziz MA. Qualitative phytochemical screening and evaluation of anti-inflammatory, analgesic and antipyretic activities of Microcos paniculata barks and fruits. J. Integr. Med. 13: 173-184 (2015) https://doi.org/10.1016/S2095-4964(15)60179-0
  22. Padda MS, Picha DH. Methodology optimization for quantification of total phenolics and individual phenolic acids in sweetpotato (Ipomoea batatas L.) roots. J. Food Sci. 72: C412-C416 (2007) https://doi.org/10.1111/j.1750-3841.2007.00448.x
  23. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  24. Jasprica I, Bojic M, Mornar A, Besic E, Bucan K, Medic-Saric M. Evaluation of antioxidative activity of Croatian propolis samples using DPPH* and $ABTS*^{+}$ stable free radical assays. Molecules 12: 1006-1021 (2007) https://doi.org/10.3390/12051006
  25. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L. Plant polyphenols:chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 50: 586-621 (2011) https://doi.org/10.1002/anie.201000044
  26. Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81: 230S-242S (2005) https://doi.org/10.1093/ajcn/81.1.230S
  27. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158 (1965)
  28. Bray HG, Thorpe WV. Analysis of phenolic compounds of interest in metabolism. Meth. Biochem. Anal. 1: 27-52 (1954)
  29. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghsakadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52: 794-804 (2004)
  30. Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012: 936486 (2012)
  31. Khurana S, Piche M, Hollingsworth A, Venkataraman K, Tai TC. Oxidative stress and cardiovascular health: therapeutic potential of polyphenols. Can. J. Physiol. Pharmacol. 91: 198-212 (2013) https://doi.org/10.1139/cjpp-2012-0252
  32. Jhee OH, Yang CB. Antioxidant activity of extract from Bangah herb. Korean J. Food Sci. Technol. 28: 1157-1163 (1996)
  33. Moncada S, Palmer RM, Higgs EA. Nitric oxide:physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142 (1991)
  34. Geller DA, Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 17: 7-23 (1998) https://doi.org/10.1023/A:1005940202801
  35. Hu C, Kitts DD. Luteolin and luteolin-7-o-glucoside form dandelion flower suppress iNOS and COX-2 in RAW 264.7 cells. Mol. Cell Biochem. 265: 107-113 (2004) https://doi.org/10.1023/B:MCBI.0000044364.73144.fe
  36. Lee HJ, Li H, Chang HR, Jung H, Lee DY, Ryu JH. (-)-Nyasol, isolated from Anemarrhena asphodeloides suppresses neuroinflammatory response through the inhibition of I-kBa degradation in LPS-stimulated BV-2 microglial cells. J. Enzyme Inhib. Med. Chem. 28: 954-959 (2013) https://doi.org/10.3109/14756366.2012.697057
  37. Lee HJ, Lim HJ, Lee DY, Jung H, Kim MR, Moon DC, Kim KI, Lee MS, Ryu JH. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-kappa B alpha degradation in RAW 264.7 cells. Biochem. Biophys. Res. Commun. 391: 1400-1404 (2010) https://doi.org/10.1016/j.bbrc.2009.12.073
  38. Zhao F, Chen L, Zhang M, Bi C, Li L, Zhang Q, Shi C, Li M, Zhou S, Kong L. Inhibition of lipopolysaccharide-induced iNOS and COX-2 expression by indole alkaloid, 3-(hydroxymehtyl)-6,7-dihydroindolo[2,3-a]quinolizin-(12H)-one, via NF-${\kappa}B$ inactivation in RAW 264.7 macrophages. Planta Med. 79: 782-787 (2013) https://doi.org/10.1055/s-0032-1328550
  39. Erkan N, Ayranci G, Ayranci E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 110: 76-82 (2008) https://doi.org/10.1016/j.foodchem.2008.01.058
  40. Huang N, Hauck C, Yum MY, Rizshsky L, Widrlechner MP, McCoy JA, Murphy PA, Dixon PM, Nikolau BJ, Birt DF. Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. J. Agric. Food Chem. 57: 10579-10589 (2009) https://doi.org/10.1021/jf9023728
  41. Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Brunelleschi S, Lombardi G. Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br. J. Pharmacol. 157: 1072-1084 (2009) https://doi.org/10.1111/j.1476-5381.2009.00213.x
  42. Domitrovic R, Skoda M, Vasiljev Marchesi V, Cvijanovic O, Pernjak Pugel E, Stefan MB. Rosmarinic acid ameliorates acute liver damage and fibrogenesis in carbon tetrachloride-intoxicated mice. Food Chem. Toxicol. 51: 370-378 (2013) https://doi.org/10.1016/j.fct.2012.10.021
  43. Zhu F, Asada T, Sato A, Koi Y, Nishiwaki H, Tamura H. Rosmarinic acid extract for antioxidant, antiallergic, and ${\alpha}$-glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from Perilla leaves. J. Agr. Food Chem. 62: 885-892 (2014) https://doi.org/10.1021/jf404318j
  44. Xu Y, Jiang Z, Ji G, Liu J. Inhibition of bone metastasis from breast carcinoma by rosmarinic acid. Planta Med. 76: 956-962 (2010) https://doi.org/10.1055/s-0029-1240893