DOI QR코드

DOI QR Code

Structural and Magnetic Properties of Mechanochemically Prepared Li Ferrite Nanoparticles

  • Haddadi, M. (Department of Physics, Faculty of Science, University of Isfahan) ;
  • Mozaffari, M. (Department of Physics, Faculty of Science, University of Isfahan) ;
  • Amighian, J. (Department of Physics, Faculty of Science, University of Isfahan)
  • Received : 2016.12.10
  • Accepted : 2017.03.24
  • Published : 2017.06.30

Abstract

In this work, lithium ferrite ($Li_{0.5}Fe_{2.5}O_4$) nanoparticles were prepared via mechanochemical processing and subsequent heat treatment at a relatively low ($600^{\circ}C$) calcining temperature. The raw materials used were high purity $Fe_2O_3$ and $Li_2CO_3$ that were milled for between 2 and 20 h. The milled powders were then calcined at temperatures of 500 and $600^{\circ}C$ for 5 h in air. XRD results show that optimum conditions to obtain single phase lithium ferrite nanoparticles with a mean crystallite size of about 23 nm, using Scherrer's formula, are 10 h milling and calcination at $600^{\circ}C$. Saturation magnetization and coercivity of the single phase Li ferrite nanoparticles are 44.6 emu/g and 100 Oe respectively, which are both smaller than those of the bulk Li ferrite. The Curie temperature of the single sample was determined by a Faraday balance, which is $578^{\circ}C$ and smaller than that of bulk Li ferrite.

Keywords

References

  1. J. Smit and H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven (1959).
  2. S. Y. An, I. B. Shim, and C. S. Kim, J. Magn. Magn. Mater. 290-291, 1551 (2005). https://doi.org/10.1016/j.jmmm.2004.11.244
  3. A. Tavkoli, M. Sohrabi, and A. Kargari, Chem. Pap. 61, 151 (2007).
  4. D. Segal, J. Mater. Chem. 7, 1297 (1997). https://doi.org/10.1039/a700881c
  5. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego (1990) pp 667-781.
  6. M. L. S. Teo, L. B. Kong, Z. W. Li, G. Q. Lin, and Y. B. Gan, J. Alloys Compd. 459, 557 (2008). https://doi.org/10.1016/j.jallcom.2007.05.050
  7. M. L. S. Teo, L. B. Kong, Z. W. Li, G. Q. Lin, and Y. B. Gan, J. Alloys Compd. 459, 567 (2008). https://doi.org/10.1016/j.jallcom.2007.05.082
  8. M. L. S. Teo, L. B. Kong, Z. W. Li, G. Q. Lin, and Y. B. Gan, J. Alloys Compd. 459, 576 (2008). https://doi.org/10.1016/j.jallcom.2007.04.257
  9. D. H Ridgley, H. Lessoff, and J. D. Childress, J. Am. Ceram. Soc. 53, 304 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12113.x
  10. H. Ueda, A. Matsui, Y. Miura, N. Minoru, and F. Minoru, Mater. Sci. 17, 562 (1985).
  11. J. S. Benjamin, Metal Powder Rep. 45, 122 (1997).
  12. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
  13. D. R. Maurice and T. H. Courtney, Metall. Trans. A 21, 289 (1990). https://doi.org/10.1007/BF02782409
  14. A. Hasanpour, M. Mozaffari, M. R. Azani, and A. Hassanpour, Russ. J. Phys. Chem. A 86, 264 (2012). https://doi.org/10.1134/S0036024412020021
  15. M. Mozaffari and Y. Zare, J. Supercond. Nov. Magn. 28, 3157 (2015). https://doi.org/10.1007/s10948-015-3145-z
  16. M. Mozaffari, M. Eghbali Arani, and J. Amighian, J. Magn. Magn. Mater. 322, 3240 (2010). https://doi.org/10.1016/j.jmmm.2010.05.053
  17. M. Mozaffari and H. Masoudi, J. Supercond. Nov. Magn. 27, 2563 (2014). https://doi.org/10.1007/s10948-014-2625-x
  18. M. Mozaffari, M. Gheisari, M. Niyaifar, and J. Amighian, J. Magn. Magn. Mater. 321, 2981 (2009). https://doi.org/10.1016/j.jmmm.2009.04.034
  19. A. Hasanpour, M. Mozaffari, and J. Amighian, Physica B 387, 298 (2007). https://doi.org/10.1016/j.physb.2006.04.039
  20. M. Mozaffari, F. Ebrahimi, S. Daneshfozon, and J. Amighian, J. Alloys Compd. 449, 65 (2008). https://doi.org/10.1016/j.jallcom.2006.03.107
  21. T. Tsuzuki, K. Pethick, and P. G. McCormick, J. Nanopart. Res. 2, 375 (2000). https://doi.org/10.1023/A:1010051506232
  22. Takuya Tsuzuki and Paul G. McCormick, J. Mater. Sci. 39, 5143 (2004). https://doi.org/10.1023/B:JMSC.0000039199.56155.f9
  23. K. Rama Krishna, K. Vijaya Kumar, and Dachepalli Ravinder, Adv. Mater. Phys. Chem. 2, 185 (2012).
  24. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, NJ (2009) p 7.
  25. S. Soreto Teixeira, M. P. F. Graça, and L. C. Costa, J. Non-Cryst. Solids 358, 1924 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.06.003
  26. Hisham M. Widatallah and Frank J. Berry, J. Solid State Chem. 164, 230 (2002). https://doi.org/10.1006/jssc.2001.9466
  27. S. A. Mazen and N. I. Abu-Elsaad, Appl. Nanosci. 5, 105 (2015). https://doi.org/10.1007/s13204-014-0297-2
  28. J. Smit and H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven (1959) p 157.
  29. M. George, S. S. Nair, A. M. John, P. A. Joy, and M. R. Anantharaman, J. Phys. D: Appl. Phys. 39, 900 (2006). https://doi.org/10.1088/0022-3727/39/5/002
  30. X. Wang, L. Gao, L. Li, H. Zheng. Z. Zhang, W. Yu, and Y. Qian, Nanotech. 16, 2677 (2005). https://doi.org/10.1088/0957-4484/16/11/035
  31. Y. P. Fu, S. Tsao, C. T. Hu, and Y. D. Yao, J. Alloys Compd. 395, 272 (2005). https://doi.org/10.1016/j.jallcom.2004.11.048
  32. M. Mouroi, R. Street, P. G. McCormick, and J. Amighian, Phys. Rev. B 63, 184414 (2001). https://doi.org/10.1103/PhysRevB.63.184414