DOI QR코드

DOI QR Code

Study on Anomalous Codeposition Phenomenon of CoNi Magnetic Films

  • Yu, Yundan (College of Materials Science and Engineering, China Jiliang University) ;
  • Wei, Guoying (College of Materials Science and Engineering, China Jiliang University) ;
  • Ge, Hongliang (College of Materials Science and Engineering, China Jiliang University) ;
  • Jiang, Li (College of Materials Science and Engineering, China Jiliang University) ;
  • Sun, Lixia (College of Materials Science and Engineering, China Jiliang University)
  • Received : 2016.12.20
  • Accepted : 2017.05.16
  • Published : 2017.06.30

Abstract

CoNi alloy films prepared from electrolytes with various concentrations of cobalt ions were studied in the paper. Influences of different cobalt ions concentrations on electrochemistry processes, components, microstructures, surface morphologies and magnetic properties of CoNi films were investigated. It was found that CoNi film plating was a kind of anomalous codeposition process. The percentage of cobalt content in CoNi films was higher than that of in the electrolyte. Moreover, with the rise of cobalt ions concentrations, the percentage of cobalt content in the samples increased gradually. CoNi films possessed crystal structures with four stronger diffraction peaks. However, CoNi films prepared from bath with higher cobalt ions possessed hcp structures which contributed to dendrite structures resulting in the increase of coercivity.

Keywords

References

  1. J. Joseph and S. G. Singh, Mater. Lett. 52, 197 (2017).
  2. R. Godbole and V. P. Godbole, Mat. Sci. Semicon. Proc. 63, 212 (2017). https://doi.org/10.1016/j.mssp.2017.02.023
  3. A. A. Bagade, V. V. Ganbavle, and S. V. Mohite, J. Colloid. Interf. Sci. 497, 181 (2017). https://doi.org/10.1016/j.jcis.2017.02.067
  4. M. S. E. Bana and S. S. Fouad, J. Alloys Compd. 705, 333 (2017). https://doi.org/10.1016/j.jallcom.2017.02.106
  5. K. Duschek, M. Uhlemann, H. Schlorb, and K. Nielsch, Electrochem. Commun. 72, 153 (2016). https://doi.org/10.1016/j.elecom.2016.09.018
  6. E. Aubry and T. Liu, J. Magn. Mang. Mater. 422, 391 (2017). https://doi.org/10.1016/j.jmmm.2016.09.013
  7. W. H. Lu, D. B. Sun, and H. Y. Yu, J. Alloys Compd. 546, 229 (2013). https://doi.org/10.1016/j.jallcom.2012.08.063
  8. P. Zhong, J. Iron. Steel. Res. Int. 14, 292 (2007). https://doi.org/10.1016/S1006-706X(08)60097-7
  9. E. Aubry, T. Liu, A. Billard, A. Dekens, and F. Perry, J. Magn. Magn. Mater. 422, 391 (2017). https://doi.org/10.1016/j.jmmm.2016.09.013
  10. J. V. Arenas, R. H. Lara, and F. S. Sosa, Ref. Mod. Mater. Sci. Mater. Eng. 3, 86 (2017).
  11. V. Solanki, O. I. Lebedev, and M. M. Seikh, J. Magn. Magn. Mater. 420, 39 (2016). https://doi.org/10.1016/j.jmmm.2016.06.087
  12. D. Nie, C. J. Xu, H. Y. Chen, and Y. J. Wang, Mater. Lett. 131, 306 (2014). https://doi.org/10.1016/j.matlet.2014.06.009
  13. R. Y. Qin, X. J. Zhang, S. Q. Guo, and B. B. Sun, Surf. Coat. Technol. 360, 816 (2016).
  14. Q. S. Chen, Z. Y. Zhou, and G. C. Guo, Electrochim. Acta. 113, 694 (2013). https://doi.org/10.1016/j.electacta.2013.09.114
  15. J. V. Aenas, L. A. Garcia, and M. Pritzker, Electrochim. Acta. 65, 234 (2012). https://doi.org/10.1016/j.electacta.2012.01.050
  16. Y. Li, Y. Tao, D. Ke, and Y. Ma, Appl. Surf. Sci. 357, 1714 (2015). https://doi.org/10.1016/j.apsusc.2015.09.220
  17. A. Dolati, M. Sababi, E. Nouri, and M. Ghorbani, Mater. Chem. Phys. 102, 118 (2007). https://doi.org/10.1016/j.matchemphys.2006.07.009
  18. J. Y. Li, C. Ni, J. Y. Liu, and M. J. Jin, Mater. Chem. Phys. 148, 1202 (2014). https://doi.org/10.1016/j.matchemphys.2014.09.048
  19. C. S. Liu, F. H. Su, and J. Z. Liang, Surf. Coat. Technol. 292, 37 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.027
  20. E. Gomez and E. Valles, Electroanal. Chem. 421, 157 (1997). https://doi.org/10.1016/S0022-0728(96)04835-8
  21. H. Yan, J. Downes, and P. J. Boden, J. Electrochem. Soc. 143, 1577 (1996). https://doi.org/10.1149/1.1836682
  22. L. Tian, J. Xu, and C. Qiang, Appl. Surf. Sci. 257, 4689 (2011). https://doi.org/10.1016/j.apsusc.2010.12.123
  23. C. K. Chung and W. T. Chang, Thin Solid Films 517, 4800 (2009). https://doi.org/10.1016/j.tsf.2009.03.087
  24. K. M. Yin, J. H. Wei, J. R. Fu, B. N. Popov, and S. N. Popova, J. Appl. Electrochem. 25, 543 (1995). https://doi.org/10.1007/BF00573212
  25. J. Vaes, J. Fransaer, and J. P. Celis, J. Electrochem. Soc. 147, 3718 (2000). https://doi.org/10.1149/1.1393963
  26. M. Srivastava, V. E. Selvi, and K. S. Rajam, Surf. Coat. Technol. 201, 3051 (2006). https://doi.org/10.1016/j.surfcoat.2006.06.017
  27. L. P. Wang, Y. Gao, Q. J. Xue, and T. Xu, Appl. Surf. Sci. 242, 326 (2005). https://doi.org/10.1016/j.apsusc.2004.08.033
  28. J. W. Sun, S. L. Wang, Z. W. Yan, and Y. H. Wen, Mater. Sci. Eng. 639, 456 (2015). https://doi.org/10.1016/j.msea.2015.05.037