DOI QR코드

DOI QR Code

The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites

  • Lafta, Sadeq H. (Applied Science Department, University of Technology (UOT))
  • Received : 2017.02.10
  • Accepted : 2017.05.02
  • Published : 2017.06.30

Abstract

The ferromagnetic resonance and other magnetic properties dependence on $Ni^{2+}/Fe^{3+}$ ratio and crystallite size were investigated for nano nickel ferrite ($NiFe_2O_4$). The crystallite size was controlled by controlling the nickel content in the starting material solution. The XRD and TEM were utilized to measure the crystallite size through Scherrer formula and particle size respectively. The most frequent particle sizes were lower than crystallite size, which ranged from 16.5 to 44.65 nm. The general behavior of M-H loop shapes and parameters showed superparamagnetic one. The saturation magnetization had a maximum value at $Ni^{2+}/Fe^{3+}$ molar ratio equal to 0.186. The FMR signals showed, generally, broad linewidths, where the maximum width and minimum resonance field were for the sample of the lowest crystalline size. Furthermore, FMR resonance field shows linear dependence on crystalline size. The fitting relation was estimated to express this linear dependency on the base of behavior coincidence between particle size and the inverse of saturation magnetization. The given interpretations to understand the intercept and the slope meanings of the fitted relation were based on Larmor equation, and inhomogeneous in the anisotropy constant.

Keywords

References

  1. D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C 113, 8606 (2009). https://doi.org/10.1021/jp901077c
  2. M. Han, Ch. R. Vestal, and Z. J. Zhang, J. Phys. Chem. B 108, 583 (2004). https://doi.org/10.1021/jp035966m
  3. H. Montiel, G. Alvarez, I. Betancourt, R. Zamorano, and R. Valenzuela, Physica B 384, 297 (2006). https://doi.org/10.1016/j.physb.2006.06.015
  4. G. Alvarez, H. Montiel, D. Cos, A. Garcia-Arribas, R. Zamorano, J. M. Barandiarán, and R. Valenzuela, J. Non-Cryst. Solids 354, 5195 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.08.017
  5. G. Alvarez, H. Montiel, J. F. Barron, M. P. Gutierrez, and R. Zamorano, J. Magn. Magn. Mater. 322, 348 (2010). https://doi.org/10.1016/j.jmmm.2009.09.056
  6. J. M. D. Coey, Magentism and Magnetic Material, Cambridge University press, New York (2010).
  7. H. Yang, Y. Li, M. Zeng, W. Cao, E. B. William, and Y. Ronghai, Sci. Rep. 6, 20427 (2016). https://doi.org/10.1038/srep20427
  8. N. Pachauri, PhD Dissertation Alabama University, Alabama (2014).
  9. R. Valenzuela, Novel Applications of Ferrites, Phys. Res. Int. ID 591839 (2012).
  10. J. L. Xie, M. Han, L. Chen, R. Kuang, and L. Deng, J. Magn. Magn. Mater. 314, 37 (2007). https://doi.org/10.1016/j.jmmm.2007.02.124
  11. C. Y. Tsay, C. Y. Liu, K. S. Liu, I. N. Lin, L. J. Hu, and T.-S. Yeh, J. Magn. Magn. Mater. 239, 490 (2002). https://doi.org/10.1016/S0304-8853(01)00669-2
  12. R. D. Sanchez, C. A. Ramos, J. Rivas, P. Vaqueiro, and M. A. Lopez-Quintela, Physica B 354, 104 (2004). https://doi.org/10.1016/j.physb.2004.09.028
  13. V. G. Harris, IEEE Trans. Magn. 48, 1075 (2012). https://doi.org/10.1109/TMAG.2011.2180732
  14. F. Gazeau, J. C. Bacri, F. Gendron, R. Perzynski, Y. L. Raikher, V. I. Stepanov, and E. Dubois, J. Magn. Magn. Mater. 186, 175 (1998). https://doi.org/10.1016/S0304-8853(98)00080-8
  15. M. Noginov, N. Noginova, O. Amponsah, R. Bah, R. Rakhimov, and V. A. Atsarkin, J. Magn. Magn. Mater. 320, 2228 (2008). https://doi.org/10.1016/j.jmmm.2008.04.154
  16. F. Gazeau, J. C. Bacri, F. Gendron, R. Perzynski, Y. L. Raikher, V. I. Stepanov, and E. Dubois, J. Magn. Magn. Mater. 202, 535 (1999). https://doi.org/10.1016/S0304-8853(99)00156-0
  17. R. Valenzuela, F. Herbst, and S. Ammar, J. Magn. Magn. Mater. 324, 3398 (2012). https://doi.org/10.1016/j.jmmm.2012.02.051
  18. I. Edelman, E. Petrakovskaja, D. Petrov, S. Zharkov, R. Khaibullin, V. Nuzhdin, and A. Stepanov, Appl. Magn. Res. 40, 363 (2011). https://doi.org/10.1007/s00723-011-0218-4
  19. A. F. Lehlooha, S. H. Mahmooda, and J. M. Williamsb, Physica B 321, 159 (2002). https://doi.org/10.1016/S0921-4526(02)00843-8
  20. S. Oyarzún, A. Tamion, F. Tournus, V. Dupuis, and M. Hillenkamp, Sci. Rep. 5, 14749 (2015). https://doi.org/10.1038/srep14749
  21. X. Lasheras, M. Insausti, I. Gil de Muro, E. Garaio, F. Plazaola, M. Moros, L. De Matteis, J. M. de la Fuente, and L. Lezama, J. Phys. Chem. C 120, 3492 (2012).
  22. A. Monshi, M. R. Foroughi, and M. R. Monshi, W. J. Nano Sci. Eng. 2, 154 (2012). https://doi.org/10.4236/wjnse.2012.23020
  23. A. Patterson, Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  24. H. Wang, J. Xie, K. Yan, and M. Duan, J. Mater. Sci. Technol. 27, 153 (2011). https://doi.org/10.1016/S1005-0302(11)60041-8
  25. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008). https://doi.org/10.1021/cr068445e
  26. Emad K. Al-Shakarchi, Sadeq H. Lafta, Ali M. Musa, M. Farle, and R. Salikhov, J. Supercond. Novel Magn. 29, 923 (2016). https://doi.org/10.1007/s10948-015-3334-9
  27. M. A. Dar, J. Shah, W. A. Siddiqui, and R. K. Kotnala, Appl. Nanosci. 4, 675 (2014). https://doi.org/10.1007/s13204-013-0241-x
  28. Ka. Nejati and R. Zabihi, Chem. Cent. J. 6, 23 (2012).
  29. I. Zalite, G. Heidemane, M. Kodols, J. Grabis, and M. Maiorov, Mat. Sci. (MEDZIAGOTYRA) 18, 1392 (2012).
  30. M. Zhang, Z. Zhenfa, Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, and J. Dai, Adv. Mater. Sci. Eng. 2013, 1155 (2013).
  31. M. Lakshmi, K. V. Kumar, and K. Thyagarajan, Adv. Nanopart. 5, 103 (2016). https://doi.org/10.4236/anp.2016.51012
  32. B. S. Yoo, Y. G. Chae, Y. M. Kwon, D. H. Kim, B. W. Lee, and C. Liu, J. Magn. 18, 230 (2013). https://doi.org/10.4283/JMAG.2013.18.3.230
  33. X. He, W. Zhong, C. T. Au, and Y. D. He, Nanoscale Res. Lett. 8, 446 (2013). https://doi.org/10.1186/1556-276X-8-446
  34. R. D. Sanchez, J. Rivas, P. Vaqueiro, M. A. Lopez-Quintela, and D. Caeirob, J. Magn. Magn. Mater. 247, 92 (2002). https://doi.org/10.1016/S0304-8853(02)00170-1
  35. M. Pardavi and Horvath, J. Magn. Magn. Mater. 215-216, 171 (2001).
  36. F. X. Qin and H. X. Peng, Prog. Mater. Sci. 58, 183 (2013). https://doi.org/10.1016/j.pmatsci.2012.06.001
  37. A. H. Morrish, The Physical Principles of Magnetism, John Wiley & Sons, New York (1965).
  38. E. Schlomann, J. Phys. Chem. Solids 6, 257 (1958). https://doi.org/10.1016/0022-3697(58)90102-1
  39. R. Biasi and T. Devezas, J. Appl. Phys. 49, 2466 (1978). https://doi.org/10.1063/1.325093
  40. R. Valenzuela, Electromagnetic Waves Capter 18, ISBN 978-953-307-304-0, InTech (2011), DOI:10.5772/16508.
  41. H. Song, S. Mulley, N. Coussens, P. Dhagat, A. Jander, and A. Yokochi, J. Appl. Phys. 111, 07E348 (2012). https://doi.org/10.1063/1.3679635
  42. J. V. I. Timonen, R. H. A. Ras, O. Ikkala, M. Oksanen, E. Seppala, K. Chalapat, J. Li, and G. S. Paraoanu, Trends in nanophysics: Theory, experiment, technology (Engineering Materials Series), Springer-Verlag, Berlin (2010) pp. 257-285.
  43. C. J. Oates, F. Y. Ogrin, S. L. Lee, P. C. Riedi, and G. M. Smith, and T. Thomson, J. Appl. Phys. 91, 1417 (2002). https://doi.org/10.1063/1.1428804
  44. L. Kumar and M. Kar, J. Magn. Magn. Mater. 323, 2042 (2011). https://doi.org/10.1016/j.jmmm.2011.03.010

Cited by

  1. )-Epoxy Composite vol.54, pp.9, 2018, https://doi.org/10.1109/TMAG.2018.2839731
  2. content vol.6, pp.4, 2019, https://doi.org/10.1088/2053-1591/aafb80